

Procedural Storytelling
in Game Design

This page intentionally left blank

Procedural Storytelling
in Game Design

Edited by
Tanya X. Short
Tarn Adams

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-59531-6 (Hardback)

International Standard Book Number-13: 978-1-138-59530-9 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know
so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Short, Tanya X., author. | Adams, Tarn, author.
Title: Procedural storytelling in game design / Tanya X. Short, Tarn Adams.
Other titles: Procedural generation in game design
Description: Second edition. | Boca Raton : Taylor & Francis, 2019. |
Includes bibliographical references and index.
Identifiers: LCCN 2018048320| ISBN 9781138595316 (hardback : alk. paper) |
ISBN 9781138595309 (paperback : alk. paper)
Subjects: LCSH: Level design (Computer science) | Computer games–Design.
Classification: LCC QA76.76.C672 S543 2019 | DDC 794.8/1536–dc23
LC record available at https://lccn.loc.gov/2018048320

Visit the Taylor & Francis Web site at
www.taylorandfrancis.com

and the CRC Press Web site at
www.crcpress.com

www.copyright.com
www.copyright.com
www.copyright.com/
www.taylorandfrancis.com
www.crcpress.com
https://lccn.loc.gov/

Contents

Foreword, ix

About the Editors, xiii

Contributors, xv

SECTION 1 Introduction

CHAPTER 1 ■ Getting Started with Generators 3
DR. KATE COMPTON

CHAPTER 2 ■ Keeping Procedural Generation Simple 17
DARIUS KAZEMI

CHAPTER 3 ■ Generated Right in the Feels 23
JILL MURRAY

CHAPTER 4 ■ Adapting Content to Player Choices 37
JURIE HORNEMAN

CHAPTER 5 ■ Ethical Procedural Generation 49
DR. MICHAEL COOK

SECTION 2 Structure and Systems

CHAPTER 6 ■ Retrospective: Murder on the Zinderneuf
(1983) 65
JIMMY MAHER

v

CHAPTER 7 ■ Designing for Narrative Momentum 75
JON INGOLD

CHAPTER 8 ■ Curated Narrative in Duskers 91
TIM KEENAN AND BENJAMIN HILL

CHAPTER 9 ■ Uncanny Text: Blending Static and
Procedural Fiction 103
KEVIN SNOW

CHAPTER 10 ■ Dramatic Play in The Sims 113
DANIEL KLINE

CHAPTER 11 ■ Memorable Stories from Simple Rules in
Curious Expedition 127
RIAD DJEMILI

CHAPTER 12 ■ Amplifying Themes and Emotions
in Systems 135
DANIEL COOK

CHAPTER 13 ■ Emergent Narrative in Dwarf Fortress 149
TARN ADAMS

CHAPTER 14 ■ Heavily Authored Dynamic Storytelling
in Church in the Darkness 159
RICHARD ROUSE III

SECTION 3 Worlds and Context

CHAPTER 15 ■ Generating Histories 179
JASON GRINBLAT

CHAPTER 16 ■ Procedural Descriptions in Voyageur 193
BRUNO DIAS

vi ■ Contents

CHAPTER 17 ■ Generating in the Real World 209
MX. LAZER-WALKER

CHAPTER 18 ■ Dirty Procedural Narrative in We
Happy Few 227
ALEX EPSTEIN

CHAPTER 19 ■ Beyond Fun in Frostpunk 241
MARTA FIJAK AND JAKUB STOKALSKI

CHAPTER 20 ■ Procedural Storytelling in Dungeons
& Dragons 257
STEVEN LUMPKIN

SECTION 4 Characters

CHAPTER 21 ■ Maximizing the Impact of Generated
Personalities 271
TANYA X. SHORT

CHAPTER 22 ■ Procedural Characters in State of
Decay 2 283
GEOFFREY CARD, JØRGEN TJERNØ, AND MATTHEW BOZARTH

CHAPTER 23 ■ Plot Generators 295
ADAM SALTSMAN

CHAPTER 24 ■ Generating Personalities in The
Shrouded Isle 303
JONGWOO KIM

CHAPTER 25 ■ Dialog 317
ELAN RUSKIN

Contents ■ vii

SECTION 5 Resources

CHAPTER 26 ■ Tarot as Procedural Storytelling 339
CAT MANNING

CHAPTER 27 ■ Things You Can Do with Twitterbots 351
GEORGE BUCKENHAM

CHAPTER 28 ■ Creating Tools for Procedural Storytelling 361
EMILY SHORT

INDEX, 377

viii ■ Contents

Foreword

I hope Tanya knows what she was in for asking me to write this
foreword. I’m mostly known for very, very specific choose-your-own-
adventure style role-playing game narratives (Planescape: Torment, Fallout
2, Fallout: New Vegas, Knight of the Old Republic II, and more). As a result,
my first—and wrong—reaction for this book was to get very, very specific
and clever on the topic. But since I am not clever, this was doomed to fail,
and a good thing, too.
For example, I considered writing this foreword as procedurally gener-

ated text. But then decided I’d rather not have Tanya murder me, so instead,
I thought I might try to provide some help … especially after reading some
of the chapters within, which are very helpful, so I’d feel guilty if I didn’t.
So with that in mind, I have three tiny (fake) pearls of “wisdom” to

relate that might serve as an on-ramp to the topics in these pages. These
three pearls are:

(1) My limited experience with procedural content in most role-
playing games I’ve worked on and why this is a problem,

(2) A few thoughts on how “random” doesn’t always mean “random”,
and …

(3) Lastly, the dangers of creating special case content in a mostly
procedural game. Which is kind of the reverse of point one, but
I think that brings things full circle nicely.

But onwards!
So RPGs, for most of my career, have been creations of very specific

content.
The goals of them are to make them as reactive as possible. But even

when you know the content and the consequences, it’s no easy task to

ix

get the specific reactivity right—sometimes an NPC’s reaction lines (“Did
you hear what the workers said happened at the mine?!”) may not line up
with the player’s experience as neatly as intended (“I’m pretty damn sure
I killed every worker there, and I know no one got away”).
Also, as many publishers realize—and can be quick to shy away from—is

special case content can be extremely expensive to do properly. Thus, some
level of procedural content (random encounters—well, ones that are truly
random) was always something to look for whenever possible and propose
it where it made sense so not every single moment of the game was
scripted. You need some randomness, a little here, a little there … and
there you have it. Some random content and encounters to flesh out the
specific bits.
But … then comes another problem, which brings me to my second

big point. What’s random? Always be sure to ask. Any developer’s
definition of random in a system can be quite different depending on
who you ask.
So normally, “random” content is a genuinely random set of content

calls, whether you might want it for character names, for backgrounds,
for quests, for weapons … whatever. The more abstracted the content
is, the less you have to worry about true randomness, but the more
specific the naming is (characters, backgrounds), the more the concept
of what developers can perceive as random vs. pseudo-random comes
into play—sometimes developers (and players) want something truly
random, and sometimes they want something more akin to a “shuffle”
on a playlist, which can equate to a different technique I like to call,
“pseudo-random.”
This “pseudo-random” concept, which was relayed in a developer story

told to me by Tim Cain (Fallout, Arcanum, many others), has a few
additional parameters than the simple random concept. “Pseudo-random”
is not really called that, btw, I made that up. I don’t think Tim calls it that,
either. But in short, pseudo-random is an expression used when
a developer or player claims they want a random number generator, but
that’s not what they really want. They want the illusion of randomness.
This happens because in a true random number generation system, it

is possible two numbers or instances of content may repeat themselves
back to back. Rarely does a game designer want this. Players won’t want
it, either, if it makes the game world seem jarring and fake. Even if the

x ■ Foreword

numbers and instances of content don’t repeat back-to-back, though,
a true random generation system may cause two numbers to repeat
before the full list of numbers/instances of content have been shown to
the player. A game designer doesn’t always want this. Players may not
want it, either.
What pseudo-randomists prefer is that the “random number generator”

cycle through all the possible permutations once without repeating until all
numbers are exhausted, and then repeat the process PROVIDED the next
number generated after the sequence is over is not the last number of the
previous sequence.
Phew. And yes, that’s considered “random.” So be sure to ask what

kind of randomness a developer—and player—is looking for.
All in all, sometimes as convoluted as types of randomness can make

scripting special case content more appealing—but to bring it around to
my third point, not so much in a largely procedural game. In fact,
including special case content in a largely procedural game can be quite
dangerous.
To explain my experience with this, my work with procedural games

comes largely from absorbing knowledge from Justin Ma and Matthew
Davis, the heads of Subset Games. I had the pleasure of working with
them on FTL: Advanced Edition, and Into the Breach. I’ve also had the
opportunity to work on other procedural titles (Overfall). These titles
are by no means the last—I’ve been working on a number of projects
where generating procedural content is becoming more and more
important, and the ability to get such content right is even more
important. So consider this book as I have - a powerful study guide
for a future career or an instructive supporting text if you’re already
enmeshed in generating procedural content.
In any event, one of the key lessons in the procedural games I’ve

worked on was: be careful of special case content. It may seem like
a great reward for a player in a procedural game to find events and
moments like this (usually a unique encounter), but it has shown to
makes these same events stand out like a sore thumb if you encounter it
in a second playthrough, or a third … or a fourth … and in a procedural
game, that’s more often the case than you’d think. Players quickly get
annoyed/exhausted/bored with the excessively detailed moment you’ve
slipped into the game, far more than they would with a generic,

Foreword ■ xi

modular encounter … which is what they’ve become used to while
playing.
So one technique that’s driven home with procedural content is,

“don’t make it stand out too much”—this can apply to a specific
encounter, a specific NPC, or even sometimes, making a voice line or
a text line so distinctive or so unusual it jumps out from the rest (we
learned this doing “voice sets” in RPGs—common AI phrases, like I’m
on fire, I lost sight of you, or oh no Tanya wants me to wrap this
foreword up). When the line played, you quickly realize that one line
sticks out, so you have to go against your instincts as a developer—and
lower the distinctiveness of aspects of content.
This means you essentially want (and need) to de-flavor some of the

procedural content you’re creating, which is a new technique for a game
designer to learn—but when you play the game enough, you under-
stand. The first time you hear THAT DISTINCTIVE LINE played more
than 5 times, you will feel like stabbing someone because it jumps out
JUST ENOUGH to grab your attention. A line a little too much
individuality actually reveals the weakness of your procedural system.
It’s like that one line is trying to upstage all the others that are just
doing their job.
So that’s my pearls of wisdom. This book has many more (and much

better) insights. I hope it’s equally enlightening to you as well. Proce-
dural content is an elusive beast in the game industry, and can be
a difficult element to implement correctly, but this book can help show
you the way.

Chris Avellone,
Independent

xii ■ Foreword

About the Editors

Tanya X. Short is the Captain of Kitfox Games, the independent studio
behind Boyfriend Dungeon, The Shrouded Isle, Moon Hunters, and
more. She's also a co-founder and co-director of Pixelles, an intersec-
tionally feminist game development non-profit. Her two cats have no
interest in her storytelling, procedural or otherwise.

Tarn Adams is the co-founder of Bay 12 Games with his brother Zach,
where they work on their fantasy simulation, Dwarf Fortress, one of the
first video games acquired by the Museum of Modern Art in New York.
He has been writing (and debugging) procedural interactive narrative
projects for over twenty years.

xiii

This page intentionally left blank

Contributors

Tarn Adams
Bay 12 Games

Matthew Bozarth
Undead Labs

George Buckenham

Geoffrey Card
Undead Labs

Dr. Kate Compton

Daniel Cook
Spry Fox

Dr. Michael Cook
Queen Mary University of London

Bruno Dias

Riad Djemili
Maschinen-Mensch

Alex Epstein
Compulsion Games

Marta Fijak
11 Bit Studios

Jason Grinblat
Freehold Games

Benjamin Hill

Jurie Horneman

Jon Ingold
Inkle

Darius Kazemi

Tim Keenan

Jongwoo Kim
Kitfox Games

Daniel Kline

Mx. Lazer-Walker

Steven Lumpkin
Guerrilla Games

Jimmy Maher
The Digital Antiquarian Blog

Cat Manning

xv

Jill Murray
Discoglobe Interactive

Richard Rouse III
Paranoid Productions

Elan Ruskin

Adam Saltsman
Finji

Emily Short

Tanya X. Short
Kitfox Games

Kevin Snow

Jakub Stokalski
11 Bit Studios

Jørgen Tjernø
Undead Labs

xvi ■ Contributors

1
Introduction

S ome anthropologists believe that interactive stories were invented
alongside the campfire, when the elders of the tribe would incorpo-

rate audience suggestions and reactions into their performance. If this is
true, then the idea of a singular author dictating the narrative is a more
modern invention. Certainly, video games are an even more modern
invention, and within that digital realm, system-driven storytelling is
a rarely explored and nearly uncharted frontier.
The video game industry is large and growing, with tens of thousands

of workers across the globe, yet for all of our specialization, there are
very, very few individuals who are comfortable being called experts in
procedural storytelling. In order to acquire many of the brilliant articles
in this book, the editors had to promise we would not over-exaggerate
the authors’ mastery of the subject matter. Procedural narrative design
is not a new field, yet it remains one filled with hesitation, humility, and
apologies.
Through the course of this book, different authors will use the terms

“procedural” and “stories” differently, as suits their individual experiences.

1

However, the editors hope you find

• new ideas, approaches, and philosophies to contemplate,

• new examples of implementations and process put into practice, and

• tools and resources to use in your own projects.

In this Introduction, we will begin more generally, considering the
holistic problem, appeal, and purpose of system-driven narratives. The
book’s contents are assembled linearly, but in whatever order you choose
to encounter each chapter, we hope you will approach each author’s
insight and experience with an open mind, welcoming the infinite possi-
bilities of professional growth in this rich and complex field.

2 ■ Procedural Storytelling in Game Design

CHAP T ER 1

Getting Started with
Generators

Dr. Kate Compton

Excerpted and adapted from “So you want to build a generator … ” galaxy-
kate0.tumblr.com

With so many possible kinds of generators, what advice can I give? Any
advice will depend on what kind of generator you want to build. I’ll give you
a list of questions to ask yourself and advice tomatch your possible answers.
The first question is What are you making?
Write down the thing that your generator will make. We’ll refer to

this as your “artifact,” but it could be anything: procedural birds,
generated stories, animated dance choreography, gazpacho recipes,
RPG quests, chess variants.
Now the hard part. Inhale, exhale, and start writing down every-

thing you know about what makes one of those successful. What
qualities does a good one of those artifacts have? Funny? Harmonic?
Playable? Now go deeper: the more specific the kind of thing you are
making is, the more specific and detailed you can get with these
requirements. What does a “fun” level mean? “Fun” will mean very
different things for Super Mario or Civilization or Bejeweled. I can
come up with more properties of a good paranormal regency romance
novel than rules for a good novel. The easiest generators to make are
the ones in which you can describe “good” artifacts as set concrete
properties.

3

Now flip the question on its head: What makes a “bad” example of
this artifact? List everything you can think of, including properties that
are merely unfortunate and properties that are total deal breakers. Put
a star next to anything that absolutely must not happen. These are your
constraints. The most reliable generators are the ones in which you can
concretely describe constraints.
You now have a list of desirable properties and constraints (things

that you want and don’t want) for your artifacts. We want a generator
with a possibility space (all the kinds of artifacts it can generate) in
which most of the artifacts have the good properties and few (or none)
of the artifacts have bad properties. We’ll also want a range of artifacts,
not just the same perfect artifact over and over and over, though how
wide a range is a choice for you, the designer (a problem identified by
Gillian Smith1 and being explored by Michael Cook2).
Now we have the guidance we need to start building methods that

make artifacts.
An alternative approach: The previously described method is good

for inflexible situations, where you know ahead of time what you want
to build. For many situations, like game jams, prototypes, or side
projects, you can be more flexible and improvisational! You can start
with a method or some loose pieces to figure out what they “want” to
generate (what properties they are best at generating) and then revise
what artifacts you are generating to better suit what the generator is
good at making.

BUILDING YOUR ARTIST-IN-A-BOX
When the Spore editors were being designed, the engineers and
designers worked closely with the art team to understand how an artist
or animator would go about sculpting and texturing a creature. If they
could understand the process and design an algorithm that could follow
that process on demand, they would have an “Artist-in-a-box” that
could make procedurally generated creatures that would be nearly as
good as the original animator would have made. Designer Chaim
Gingold explained this process in his 2007 GDC talk, and Art Director
Ocean Quigley used a similar process to experiment with the kinds of
building blocks he would want for building cities.3

4 ■ Procedural Storytelling in Game Design

It is helpful when making a generator to sit down with people who make
the sort of artifacts you are building and have them walk you through the
process of making something. What questions do they ask themselves along
the way? How do they make decisions? How do they describe the trade-offs
between choices? How do they describe the different problems that they
have to keep in mind? How do they name all the parts of what they are
working on and all the relationships between them (their ontology)?
Some fields have expert practitioners who have written frameworks,

often controversial, to describe what they do. Music theory has proposed
plenty of rule systems, for example, for jazz improvisation, Bach-style
harmonies, or pop songs. Story generation has narratological theories like
the hero’s journey, but also informal frameworks like TV tropes. Art theory
has the golden ratio, color harmonies, and composition rules (I haven’t
found those visual aesthetic rules to be productive in my own work, though
you may feel differently). No one framework is complete or makes
provable good artifacts, but each can give you guidance and inspiration.
So now, ask yourself: How would a human solve this problem?

FROM RULES TO GENERATIVE METHODS
Unfortunately, knowing how a human would make something isn’t the
same as being able to teach a computer how to do it. Humans are good
at estimation, making guesses, and synthesizing a lot of knowledge
about past situations. Computers know only what you tell them, and
many problems require way more implicit knowledge than we think,
but computers are good at performing lots of calculations and trying
out lots of possibilities. So the methods we want to use will need to
provide a way for the computer to solve problems like a human, or at
least with a way to mirror some of the skills of a human. Methods that
are particularly good for building generators (generative methods) will
give the computer some of the following skills:

• Encapsulate knowledge of options (skill A)

• Create some structure (skill B)

• Encode conditional rules for options (A2)

• Create variability in structure (B2)

Getting Started with Generators ■ 5

• Be able to ask itself questions about its constraints (have I solved
this?) (skill C)

Distribution

This is the easiest kind of generative method. You have a bag of stuff
and an area of space or time that you can spread them out across.
Distribution methods usually don’t have much overall structure (B), but
they are often very sophisticated with the odds of picking each option
(A). Some use weighted randomness to change the distribution percen-
tages, or “deck shuffling” (putting all the options in a stack and
discarding when they are used), which prevents accidentally picking
the same option twice. The conditional rules (A2) can get quite complex
as well, but specifying arbitrary conditions is difficult to implement in
practice. Most systems have carefully chosen parameters that can be set
for each option, and the conditional functions can just compare the
fixed parameters to make choices.
For an RPG example, wandering monsters are distributed around the

environment (A). Higher monsters are found in higher level areas,
water monsters in water, etc. (A2). There may be a little structure as to
how they are distributed, like several “baby” versions of a monster
leading up to the “boss” version. Loot is also distributed: You may be
more likely to get high level loot in high level situations (A2), but
there’s still some randomly selected stuff chosen from a big list of
possible loots (A).
Distribution in music and language doesn’t work well. Randomly

selected strings of words or musical notes don’t have enough structure
to make interesting meaning. For structure-heavy artifacts, you might
want tile-based or grammar-based methods instead, or for something
with very fixed structure and not much variability, you could try the
parametric approach.

Parametric Methods

You have a pretty well-built artifact already, and you know that you can
tweak it a little. You have music, and you can transpose it up or down,
make it louder or softer. You have a teapot, and you can make the spout
curve out farther; you can make the body tall or short, thin or fat; and
you can make the base wide or narrow. If you have a set of handmade

6 ■ Procedural Storytelling in Game Design

alien creatures, you can tweak their legs to be long, fat, curved, or flat-
footed, and their bellies can be slender or barrel-shaped; their voices
will change as well. This is how creatures in No Man’s Sky are varied.
This is a very reliable and controllable technology! 3D models can often
be encoded as a Maya animation channel, allowing them to blend with
other animations (a Spore trick used in the rig-block animations). But
your variability (A) is along fixed one-dimensional numerical paths;
there is no structure variability at all (B2). You can see something “new”
but never something surprising.
A more sophisticated form of parametric methods uses other forms

of input and can generate new artifacts based on not only numerical,
but also point-based, path-based, and graph-based input. When you
draw a line in Photoshop with a tablet pen, your path becomes the
input to an algorithm that renders a brushstroke, taking into account
pressure, speed, and tilt as parameters at each point. The Spore crea-
tures, likewise, used metaballs, a geometry creation algorithm that can
create smooth tubes along paths in 3D space. Other algorithms for
filling spaces and paths are Voronoi patterns, Perlin/Simplex noise,
triangulation algorithms, 3D extrusion or rotation, and the diamond-
square algorithm for fractal terrain. These algorithms are particularly
well-suited for interactive generators, because the user can provide the
input parameters for the generator.
Want more? Inconvergent.net has more intriguing specimens than

you could possibly ever need, with open-source implementations. How-
ever, although these algorithms are delightfully surprising, they can
often be too uncontrollable to provide the constraint-satisfaction
needed for gameplay or other highly constrained artifacts.

Tile-based

Chop the problem up into modular, identically sized slots. Have
a number of different handmade solutions that can fill these slots. The
artifacts being created are just differently selected or ordered sets of pre-
authored solutions. A familiar example is the board layout for games
like Settlers of Catan and Betrayal at the House on the Hill (or Civiliza-
tion for a digital example). The island and the mansion are constructed
from the same tiles each time but laid out differently, which changes the
gameplay. Some of the earliest forms of generative content I’ve found

Getting Started with Generators ■ 7

are the Musikalisches Würfelspiel from the 1750s and earlier, with
which pianists could put together “tiles” (in this case measures) of
music to produce a playable waltz.
Tile-based methods are great for small scale structure (B) because

the insides of the tile are pre-authored, but they have no flexibility
(B2) for small scale structure for the same reason. Large scale structure
is harder to control: It can be totally random. You can have more
advanced constraints about which tiles can go next to other tiles, but
then you may need a complex algorithm to solve for compatible
layouts of highly constrained tiles (“The beach tile can go next to
a jungle tile but cannot be within two tiles of a river tile. … ”).
Individual tiles have a very rigid encapsulation of possible options
(A) because each possible tile has to be authored by a human. These
systems don’t have enough knowledge to come up with good new tiles
by themselves. Tile-based methods work for problems that can be
broken up into small chunks where internal structure matters but
that can still create interesting (but not constraint-breaking) behavior
when combined in different orders.
Interested in more analog content generation? Additional forms of

board game and role-playing game content generation can be found in
“An Analog History of Procedural Generation” by Gillian Smith,4 and
the exploration of comics by Chris Martens5 shown in Figure 1.1.

FIGURE 1.1

8 ■ Procedural Storytelling in Game Design

Grammars

Grammars comprise one of my favorite generative methods, because
I find that they give me a great way to make very deep and complicated
structures while still also having a lot of control over my options.
Grammars are a computer-science-y way of saying that big complex
things are made out of other things, and those other things may
themselves be made out of even smaller simpler things. Orteil’s Nested
is a lovely example of this. The universe is made of galaxies made of
planets made of continents full of people who are full of thoughts and
dreams and memories and atoms. Each symbol (that is, each type of
thing, as shown in Figure 1.1) has a distribution of subsymbols of which
it might be composed. When it “unpacks,” it has to pick one of those
options (and any subsymbols) and then unpack recursively. Grammars
make it easy to encode knowledge about a particular artifact and its
structure and its options all in one piece of data. I like them so much that
I made a library to help people work with them: Tracery. This has been
used to make a Twitterbot hosting service and lots of great weird creative
Twitterbots including some of my own (see also Chapter 27 of this text).
The downside of grammars is that they do not have a way to handle

constraints, unless the constraints are implicitly encoded in the grammars
themselves (if a bed can only be in a house, then only the house can have
a bed as a subchild, for example). It’s harder for grammars to encode high
level relationships between different things generated at different points
in the grammar. If you want to have foreshadowing of the villain’s
death at the very beginning of the grammar, that might be difficult to
do, and you might want to use the “big hammer” of a constraint solver.

Constraint Solvers

Constraint solvers are very powerful, very recent tools in our generative
arsenal. They are what you use when you have a lot of hard constraints
and a lot of flexible and complex structures, but you don’t know how to
build out the structures in a way that will be sure to solve your
constraints.
The oldest, simplest version is brute force solving: make every

possible variant of content, toggle every switch, make an alternative
universe where you have made each different decision, and test your

Getting Started with Generators ■ 9

constraints until you find one that works. This is a viable solution for
some problems, but as any mathematician will tell you, too many choices
will create a number of possible artifacts greater than the number of atoms
in the universe, and searching them is going to be slow.
There are often shortcuts you can take, depending on how your

constraints are structured (I don’t have to choose an ice cream flavor
in possible futures in which I do not go out for ice cream), but this
takes a long time to author by hand (just ask the Storyteller developer).
Fortunately, many mathematicians and logicians find it amusing to try
to solve this problem, and they have come up with general purpose
solvers. Plug in your constraints, structures, and options (in a language
that it can understand), and these solvers will find all the cheap short-
cuts to cut the eons of brute force solver time down to something slow
but accomplishable within normal gameplay time.
Because these tools are big and bulky and new, they are still hard to

plug into many game engines, and there aren’t many tutorials. Adam
Smith has been doing good educational outreach for Answer Set
Solving, a particularly powerful method. Craft by Ian Horswill is
a constrained random number generator with some support that has
been recently ported to Javascript. Look for these rare but powerful
tools to be more common in the future!

Agents and Simulations

This is where it gets weird. Remember how I said that we could look at how
humans solve problems to provide inspiration for our generators? Guess
what: Humans aren’t the only ones who solve problems! Some algorithms
solve problems based on the colonial behaviors of ants or the social
communications of fireflies. Many agents and simulations take inspiration
from parts of nature, like flocks of birds, evolution, bacteria, neurons and
cities. Here are a few of my favorites, but there are many more.
Steering behaviors can create remarkably complex crowd motion.

Braitenberg vehicles were originally a thought experiment about simple
machines with two photosensitive eyes and two wheels that could
“steer” themselves just by activating one wheel more than the other,
applying an asymmetrical force that changes their direction. Despite
their total brainlessness, they can show “fear” and “adventure” and have
been ported to many languages and physical robots.

10 ■ Procedural Storytelling in Game Design

Boids took the steering approach of the Braitenberg vehicles and applied
it to flocks of birds and fish (and the wildebeest in the Lion King animated
movie). Each bird helps keep its flock in shape by calculating and applying
its own forces for cohesion, alignment, and separation. Small variations in
each bird’s tuning values can generate new behavior for the flock.
I’ve also used steering forces to generate procedural dance (Figure

1.2): You just replace the flocking forces with rhythmic forces in time to
the music. Steering forces can do a lot more than pathfinding, but
I don’t think they have yet been explored to their full potential.
Genetic algorithms do not generate content, as you still need

a generator, but they guide that generator toward more constraint-
fulfilling and desirable-property-producing content. I used this method in
a flower-evolving app (Figures 1.3, 1.4). A genetic algorithm needs three
things:

1. Something you can modify (a “genotype”)

2. Something you can judge (a “phenotype”)

3. A way to turn the first into the second

For the flowers in my app, the genotype is an array of floats. That
array is fed into a parametric generator to create a pretty animated
flower (turning genotype to phenotype). Users can see which flowers

FIGURE 1.2

Getting Started with Generators ■ 11

they like (something you can judge). They pick their favorite; its
original genotype is cloned and mutated (something you can modify),
and the next generation is born from its mutant babies; over time,
evolution happens. Sexual reproduction is common in genetic algo-
rithms, but so are many other interesting kinds of reproductions and
metaheuristics. There’s a lot of neat research in this area!
Cellular automata rely on many very simple agents all working in

parallel. The canonical example of this is Conway’s Game of Life, in
which many tiny automata in a grid, each with a very simple behavior,
can give rise to so many strange behaviors and phenomena that many

FIGURE 1.3

FIGURE 1.4

12 ■ Procedural Storytelling in Game Design

mathematicians make a hobby of discovering and cataloging them. This
method can create outcomes like Figure 1.5. Cellular automata with
more complex rules are used to create Dwarf Fortress, the classic Powder
game, and with the advent of voxel-based simulation, they are taking on
a new life as the engine behind Minecraft.
After you generate. … You’ve browsed this list of generative methods,

you’ve got your list of constraints and properties in hand, and you’ve
built your generator! Now what?

WAYS THAT GENERATORS FAIL
Something has gone horribly wrong. The content looks ugly. The
content all looks the same. The content looks like genitalia. The content
is broken. Some of these problems are easier to solve than others. Here
are a few kinds of difficult problems you will encounter.
One will be the kind in which you can computationally identify when

something is going wrong. The solution is to generate some new

FIGURE 1.5

Getting Started with Generators ■ 13

content until this constraint is no longer violated. Perhaps you want
a generated chair to have its center of gravity over its support points
(like legs), so it won’t fall over. This is possible to calculate with
a physics simulation, so if the generated chair fails, generate a new one
until it passes. This approach is called “generate and test.”
What can go wrong with “generate and test”: What if every chair you

generate fails this test? Perhaps content that passes the test is very rare, or
there are too many constraints (you have constraints for material thick-
ness and cost and symmetry and comfort and more). Each chair might
satisfy most constraints, but with enough constraints, most chairs will still
fail one or two. Maybe you need a constraint solver. Or maybe you need
to restrict your generator so that it is more conservative with its choices,
though that may lose interesting possibility space.
Another difficulty is when you cannot adequately describe your con-

straints. This is a remarkably common situation because there are so
many things that we don’t want, but we can’t write rules so that “I know
it when I see it” can be used as a serious legal argument.
Is this an offensive adjective for describing this character? Does

this color palette look too much like a corporate logo? Does this
look like genitalia? Is this just ugly? This is a hard and unsolved
problem, I’m afraid. If you can’t define “bad” content, it becomes
impossible to filter, especially when your human users are trying to
get around the detection algorithm. In this case, the best path is to
construct a generator that makes it harder or less likely to make
offensive content. This also restricts your possibility space, like
removing words that are harmless and useful unless combined in
a particular way.

Aesthetics: The Toughest Challenge

The most common way generators fail is that they produce content that
fails to be interesting. What is “interesting”? That depends on the
situation. Very few generators produce only one of a thing.
Most generate multiples, but a Twitterbot posting every hour will
generate more content than a novel-generator outputting one novel
every NaNoGenMo. So, achieving novelty with the first Twitterbot will
be more difficult because there are so many artifacts being produced
that any given one of them will probably start seeming less special.

14 ■ Procedural Storytelling in Game Design

Your algorithm may generate 18,446,744,073,709,551,616 planets.
Each may be subtly different, but as the player is exploring them
rapidly, will they be perceived as different? I like to call this the 10,000
Bowls of Oatmeal problem. I can easily generate 10,000 bowls of plain
oatmeal, with each oat being in a different position and different
orientation; mathematically speaking, they will all be completely
unique. But the user will likely just see a lot of oatmeal. Perceptual
uniqueness is the real metric, and it’s darn tough.
In some situations, just perceptual differentiation is enough and an

easier bar to clear. Perceptual differentiation is the feeling that this piece
of content is not identical to the last. A user glancing at a line of trees
can tell if they are identical or less varied than expected, suggesting
unnaturalness. This fulfills an aesthetic need even if no tree is particu-
larly memorable.
Perceptual uniqueness is much more difficult. It is the difference

between an actor being a face in a crowd scene and a character that
is memorable. Does each artifact have a distinct personality? That
may be too much to ask and too much for any user to remember
distinctly. Not everyone can be a main character. Instead, many
artifacts can be drab background noise, highlighting the few char-
acterful artifacts.
The topic of characterful artifacts is an essay for another time, but

certain aesthetic principles create objects with readable meanings for
human perception. Humans seem to like perceiving evidence of process
and forces, like the pushed-up soil at the base of a tree or the grass
growing in the shelter of a gravestone. These structurally generated
subtleties suggest to us that there is a world alive behind this object.
Kevin Lynch’s influential “Image of the City” demonstrates that certain
factors make cities memorable and describable. Perhaps there are other
aesthetic rules that we can discover, too.

NOTES

1 https://games.soe.ucsc.edu/sites/default/files/smith-expressiverange-
fdgpcg10.pdf

2 www.gamesbyangelina.org/2016/02/introducing-danesh-part-1/

Getting Started with Generators ■ 15

https://games.soe.ucsc.edu/
https://games.soe.ucsc.edu/
www.gamesbyangelina.org/

3 http://oceanquigley.blogspot.com/2009/04/spore-early-rig-block-experi
ments.html

4 http://sokath.com/main/files/1/smith-fdg15.pdf
5 http://lambdamaphone.blogspot.com/2015/12/generativity-interpreta

tion-study-of.html

16 ■ Procedural Storytelling in Game Design

http://oceanquigley.blogspot.com/
http://oceanquigley.blogspot.com/
http://sokath.com/
http://lambdamaphone.blogspot.com/
http://lambdamaphone.blogspot.com/

CHAP T ER 2

Keeping Procedural
Generation Simple

Darius Kazemi

A s a practice, procedural generation tends to draw a technical type
of person. I use “technical” in the broadest sense of the term,

meaning someone who is highly interested in technique, defined as the
procedures involved in completing a complicated task. This doesn’t
necessarily mean the task must be scientific or technological. The
technique I speak of applies equally to the mathematics of graph
theory and the practicalities of throwing a clay pot. An artist and an
engineer are equally technical.
A common problem with the technical types of people is that it is

easy for us to get lost in technique itself, seeking out ever-greater heights
of technical achievement in order to impress some unseen, usually
internalized spectator. Of course, this is understandable, as we find
pleasure in the definition and solution of problems. It’s why many of us
chase procedural generation in the first place. This drive can be a positive
thing in settings like academic research or the early prototyping phases of
a project, but it can get in the way of finishing projects.
In other words, it is easy for us to lose sight of our ultimate goal

when creating something and instead get lost in the fiddly details. We
end up with projects that increase in scope until they seem like an
unfinishable mess. We turn small problems into big ones. This isn’t the
worst thing when working in a pure research mode, but it’s a very
undesirable situation in the context of a project with a deadline.

17

One of the most life-changing pieces of advice I ever received was
from the game designer and programmer Brian Reynolds. Perhaps best
known for the PC strategy games Civilization II and Alpha Centauri,
Reynolds was giving a lecture at the Game Developers Conference in
the early 2000s about the artificial intelligence systems in his game Rise
of Nations. Tossed off as almost an aside, he said that when you are
building the AI for a strategy game, the best place to start with any
computer decision-making is to pick a decision out of a hat at random;
then test to see how it plays. If the AI is good enough, congratulations,
you have saved yourself a bunch of time, and you can move on.
While picking a strategy out of a hat will not itself be sufficient most

of the time, the important lesson in Reynolds’ words is clear: when
coming up with algorithms, start as simple as you can, test it to see if
works, and if it doesn’t, go ahead and complicate things from there.

TWO EXAMPLES FROM SPELUNKY
The procedural level generation in Derek Yu’s roguelike platformer
game Spelunky is often held up as a high water mark of the field, and
with good reason. The level generation has been covered at length in
other places, but I want to hone in on two examples from the source
code of the original freeware game that illustrate two ways of approach-
ing a procedural generation problem in the simplest possible way.
The first example is the placement of generic treasures in the level.

You might think that there would be a system of treasure sub-room
templates or an algorithm that intelligently creates appropriate places to
store treasure in a level. Spelunky does nothing like this. It handles the
problem simply and elegantly with the following algorithm: For any
given empty ground surface on the map, the probability of a treasure
existing in that space is directly proportional to the number of solid
surfaces adjacent to the space.
Because Spelunky is based on a grid of tiles, there are four possible

configurations: a tile with the ground on the bottom and nothing to the
top, left, or right (an open space); a tile with ground on the bottom and
one additional adjacent surface (usually a corner of a room but some-
times a crawlspace); a dead-end nook with access from only one
cardinal direction; and a space completely enclosed by solid surfaces.

18 ■ Procedural Storytelling in Game Design

As the number of adjacent surfaces increases, so does the chance of
treasure appearing. This makes intuitive sense: You wouldn’t hide
treasure in the middle of an open floor, but you might tuck it into the
corner of a room or a crawlspace, and you’d definitely bury it.
This is achingly elegant, but don’t worry, plenty of Spelunky’s code is

just as simple but far more kludgy. The next example we’re going to
look at is the placement of the Giant Spider enemy. As you read this
algorithm, compare it to the elegance of how treasure is placed: In the
first cave tile set, check for a two-by-two block of empty tile spaces
below every brick tile that is not the ceiling of the level itself or in
a shop, in the starting room, or on the bottom half of a room. If there is
a two-by-two block of empty tile spaces, and we’re thus allowed to
generate a Giant Spider in this level and have yet to do so, then there is
a 1 in 40 chance that we generate a Giant Spider and some cobwebs
right beneath this brick. If we do generate a Giant Spider, we should not
generate another in this level.
The above algorithm works out to about 30 lines of code, compared

to 1 line of code for the treasure placement. While one algorithm is
much briefer than the other, both are simple. Neither relies on A* path
finding, cellular automata, or Perlin noise, and certainly nothing more
complex than those classic standbys. Both algorithms rely on simple
checks against features of the game world that are already represented
in the game’s model. Neither algorithm introduces any additional data
or systems to the game. Could we come up with better solutions than
these? Probably, but these are certainly good enough and did not
prevent Spelunky from being hailed as a modern classic.

PERCEPTION VERSUS REALITY
Another hard learned lesson from years as a videogame developer:
Almost nobody who views procedural content will understand what is
happening behind the scenes.
When presented with an algorithm, most people assume far more

complexity than what is actually going on. For example, my Twitter bot
“Two Headlines” takes the subject of one news headline and swaps it for
the subject of a different news headline. I often have people ask me
what kind of natural language processing code I use for it. The truth is

Keeping Procedural Generation Simple ■ 19

that it’s running a far less complex algorithm: It goes to Google News,
clicks on a subject in the subject listing, finds a headline about that
subject, and replaces the subject name with a different subject. It’s
a simple scraper that does a find-and-replace on some text.
People also assume machine learning where there is none. I think this

is because people like to apply narratives in order to understand the
world. They like to think, “This level generator seemed random at first,
but now it’s making more sense; it must be learning my play style.”
People will sometimes attribute intelligence to the algorithm rather than
to themselves!
These perceptions are why Brian Reynolds’ advice on prototyping

artificial intelligence is so important. Simply picking a random number
to make important decisions is often enough to elicit the perception of
intelligence.

USING CONTEXT TO TAKE YOUR WORK FROM TRIVIAL
TO IMPRESSIVE
Suppose I tell you I have written some code that gets a random noun
from an English dictionary and then gives you its definition. I don’t
think you would be particularly impressed, and you would not consider
it procedural generation except in the most trivial sense of the term.
Suppose I tell you I have written software that generates variations on

a joke and that approximately three out of every five jokes it generates
cause a test audience to laugh. You would probably want to see this in
action.
Finally, suppose I tell you that both of these pieces of code are

functionally the same, save for some window dressing.
The code I am referring to does, in fact, exist; it is a generator I made

in 2011 called “You Must Be.” The code is simple, and the joke is
effective. The algorithm grabs a random noun and its definition, like

earthquake: a shaking of the ground caused by the movement of the
earth’s tectonic plates.

The window dressing, what I call the “context,” is the addition of
a few static words:

Girl, you must be an earthquake because you are a shaking of the
ground caused by the movement of the earth’s tectonic plates.

20 ■ Procedural Storytelling in Game Design

Surreal humor though it may be, it’s genuinely funny stuff. Yet the
core algorithm is about as simple as you can get, relying on the
dictionary as its mundane data source.
The “context” part is key here. The context transforms the code from

a rote algorithm to a joke generator. When you think about it, this
applies to all procedurally generated content. Take Perlin noise as an
example. I can describe the algorithm, a kind of randomized stepping
up and down over a gradient, but the algorithm is sterile, just like our
dictionary algorithm. You could have shown the algorithm for Perlin
noise to any number of mathematicians who would not have made the
leap that Ken Perlin did: applying the algorithm to the context of
naturalistic texture generation.
In the world of procedurally generated content, the difference

between a purely technical person and a craftsperson or designer is under-
standing that a great technical leap won’t necessarily create interesting
content. Rote algorithms will work just fine if you situate them within an
interesting game, visual context, or music theory framework, etc.

THE PROBLEM MIGHT NOT BE YOUR PROCGEN
Imagine you have a level generator for a Mario-style platform game. It
places platforms at random throughout a two-dimensional level. The
player can jump from one platform to the next, but the level generator
sometimes creates gaps that are too big for the player to jump. Your
instinct as a programmer might tell you that this is a problem with the
level generator; you need to put in a constraint that makes all gaps
traversable. But maybe the solution doesn’t lie in the generator.
Instead of changing the generator, you could change the way the player

character controls by adding a “run” button. Maybe you include a trade-
off, such as making it difficult to slow down once you’ve started running
or causing running to use up a valuable resource. It would probably be
easier to tweak the physics of the player sprite than to refactor your level
generator. And when you test out these changes, you may find that what
was once a “bad” level generator is now a “good” level generator.
The platform generator is responding to changes in context. When

you change the physics of the player character, the meaning of the
platforms themselves changes. The context also changes if you add

Keeping Procedural Generation Simple ■ 21

rising lava to levels, or make the platforms crumble if they are stepped
on for too long. Making technically simple changes can transform
a level generator from “generator of barely noticeable terrain” to “gen-
erator of nearly insurmountable challenges.” It can also do the opposite!
Imagine Spelunky’s level generator with the main character controlled
like Pac-Man. Suddenly this algorithm that was a stroke of brilliance is
now just making bad Pac-Man levels.
These strategies work well outside the realm of procedural generation as

well. “Write a book” is one kind of challenge. “Write a book in a month” is
an entirely different challenge that completely changes the possibility space
and will cause the writer to go about things in an unconventional way.

CONCLUSION
The next time you think of a question like “What is the best way to
generate a system of caves?”, maybe think, “What is a way that I already
know to generate a system of caves, why are those caves unsatisfying to me,
and what can be changed about everything but the caves themselves to
make them satisfying?” If you can do this, you’ll implement things faster,
you’ll have simpler code to maintain, and you may even gain some insights
about your non-procedural systems. I’m asking you to consider the
possibility that the problem with your generator is not your procedural
generation. It might be everything else.
The last thing I’ll say is that keeping your procedural generation

implementations as simple as possible has a nearly invisible long term
benefit to your career as a creator. Doing so allows you to ship more
things than you would otherwise. Actually putting work out into the
world means your art will have viewers, your game will have players,
your music will have listeners. You will probably get feedback on your
algorithms, and you will discover ways that players interact with or
perceive them that you could not have predicted. This is real knowledge
that you can take into your next project or your next iteration of the same
project. If you spend five years building what seems like the perfect
content generator, I guarantee that no matter how much testing you do
you will not learn as much about its shortcomings as you will when you
release it into the world. So just set it free into the world as soon as
possible. The next time you make something, it will be even better.

22 ■ Procedural Storytelling in Game Design

CHAP T ER 3

Generated Right in
the Feels

Jill Murray
Discoglobe Interactive

Whenever I speak at a conference, no matter the topic, a man
approaches me when I’m done, concerned about the Future of

Game Narrative.
“Let me ask you something”. He adopts a wide-legged stance before

lunging into a list of things he needs to tell me.
“What was your question?” I ask after a while.
“Oh uh …”, he quickly thinks of something. “What do YOU think

WE, as narrative designers, are not doing enough of? What do we
lack?”
My answer is always the same: “A Thorough Investigation of the

Human Condition”.
“So you’re saying we don’t innovate enough?” he replies.
As a people, we narrative designers are obsessed with the idea

of innovation. That’s why we give so many talks about it. What does it
mean for a game narrative to be branching, linear, truly non-linear,
open-world, choice-driven, player-generated, environmental, diegetic?
What can procedural generation add or take away? What is
the newest, freshest, cleverest delivery mechanism for story? It doesn’t
take long for narrative discussions to adopt a focus on structure
and delivery because those are things we can measure and test.

23

For all our talk, how often do we innovate in ways that matter to the
players? And if players are not moved to their core, is it really innovation
or just a distraction from the emotional labour of story craft, an excuse to
make charts?
I’m allowed to wonder. I’ve made my fair share of charts (Figure 3.1.)
At Ubisoft Montreal in 2011, if you finished a project and had to wait

before starting the next one, you were sent to the purgatory of Inter-
Project. You had a desk and regular hours but no assigned work unless
someone needed help punching up a list of achievements or wanted to
talk through a design issue. Depending on your work style, the unstruc-
tured time was either a blessing (paid time for research!) or a curse
(why am I even here?). I landed in this state of suspended reality
between my work on Your Shape: Fitness Evolved 2012 and Assassin’s
Creed: Liberation.
I have a hard time with the ends of projects. Though some endings

are better than others, each of them is a festival of mood swings—pride
for what we were able to accomplish, regret for what we weren’t,
anticipation for how the game might be received, and relief. No matter
how much we love it, we all hit a point where we just need a game to be

FIGURE 3.1

24 ■ Procedural Storytelling in Game Design

done already. But then we mourn the loss of a team, a routine, and
a purpose.
To cope with these feelings, I subconsciously turn to technical things.

I’m never more interested in learning a new game engine or scripting
language than right after something has ended. It’s comforting to
imagine new possibilities arising from components and knowledge
clicking tidily into place.
So it goes that roughly ten minutes into InterProject, I developed an

intense curiosity for devising types of interactive fiction structures.
Could the shape and execution of a story inspire its content? How
might storytellers employ AI as an arbiter of fate for unsuspecting
players and characters?
I wanted to create playful structures and then see what stories they

suggested. I toyed with different subversions of choice, randomness, and
exposure to information to make potential outcomes more and less
readable to the player.
The structures that began to emerge had minds of their own, creating

shapes and patterns I hadn’t anticipated. The idea was actually to be
able to produce each of these interactive narratives, so I mindfully
controlled for scope, but as soon as I did, something strange began to
happen. With the introduction of production constraints, each of my
dreamy story snowflakes began to transform, one at a time, into tiny
nightmares.
Another Door Opens (Figure 3.2) offered readers a simple A or

B decision but then allowed them to preview all possible outcomes, of
possible outcomes of their choice, ultimately presenting them with
sixteen detailed scenarios to weigh. The complexity and weight of
information rendered their choice paralyzing and impossible to evalu-
ate. They might as well flip a coin.
The Quantum Circuit (Figure 3.3) created a similar problem in

a different way. The players could choose to look inside container A or
container B but couldn’t know what might be in either container until
after they chose. The act of choosing filled the container. Choice was so
important as to be irrelevant, unless they played enough times to
understand the possible contents of each container.
In You Don’t Know What You’re Missing (Figure 3.4), readers were

required to read a chapter every day. If they missed a day, they would

Generated Right in the Feels ■ 25

not be able to go back and read the previous day’s passage but instead
would receive a summary of what they’d missed. The summaries would
vary in reliability. The more days missed, the more the summaries
would change and decay, making it impossible to trust the story after
a while. Use it or lose it. Does it matter much if the voice is reliable if
you’re enjoying a story? What if you’re not? It both emphasized and
undermined the author’s role.

Simple
Decision

Words: 5000
Words / into: 250
Words / choice: 25
Words / cons.: 150
Words / poss: 460
Words / out: 30

Consideration

Possibility

Outcome Outcome Outcome Outcome Outcome Outcome Outcome Outcome

OutcomeOutcomeOutcomeOutcome

So
which is

it?
A B

OutcomeOutcomeOutcomeOutcome

Possibility Possibility Possibility Possibility Possibility Possibility Possibility

Consideration Consideration Consideration

Choice A Choice B

Another Door Opens

FIGURE 3.2 “Another Door Opens”

26 ■ Procedural Storytelling in Game Design

Q
ua

nt
um

 C
irc

ui
t

Ev
en

t

Ev
en

t
Ev

en
t

Ev
en

t
Ev

en
t

Ev
en

t
Ev

en
t

Ev
en

t
Ev

en
t

Ev
en

t
Ev

en
t

Ev
en

t
Ev

en
t

R
an

do
m

Se
le

ct
io

n

R
an

do
m

Se
le

ct
io

n
R

an
do

m
Se

le
ct

io
n

R
an

do
m

Se
le

ct
io

n
R

an
do

m
Se

le
ct

io
n

R
an

do
m

Se
le

ct
io

n

R
an

do
m

Se
le

ct
io

n
R

an
do

m
Se

le
ct

io
n

R
an

do
m

Se
le

ct
io

n
R

an
do

m
Se

le
ct

io
n

Ev
en

t

D
ec

is
io

n

D
ec

is
io

n

D
ec

is
io

n

D
ec

is
io

n D
ec

is
io

n

D
ec

is
io

n

D
ec

is
io

n

D
ec

is
io

n

D
ec

is
io

n

D
ec

is
io

n

D
ec

is
io

n

Ev
en

t
Ev

en
t

W
or

ds
: 5

00
0

Ev
en

ts
: 2

1
W

or
ds

 /
Ev

en
t:

10
5

C
ho

ic
es

: 1
1

Ev
en

t
Ev

en
t

Ev
en

t

In
ci

tin
g

Ev
en

t

Ev
en

t

FI
G
U
R
E
3.
3

“T
he

Q
ua
nt
um

C
ir
cu
it
”

Generated Right in the Feels ■ 27

Th
e

Fo
rg

et
tin

g
C

ur
ve

?
Yo

u
D

on
’t

Kn
ow

 W
ha

t Y
ou

’re
 M

is
si

ng
D

ay
 E

la
ps

ed
:

D
ay

1
R

ea
di

ng

D
ay

 3
R

ea
di

ng
 A

D
ay

 3
R

ea
di

ng
 B

D
ay

 3
R

ea
di

ng
 C

D
ay

 3
R

ea
di

ng
 D

Su
m

m
ar

y
1a1

2
+

Su
m

m
ar

y
2a

Su
m

m
ar

y
2c

Su
m

m
ar

y
3a

Su
m

m
ar

y
3c

Su
m

m
ar

y
3e

Su
m

m
ar

y
3g

Su
m

m
ar

y
3h

D
ay

 4
R

ea
di

ng
 H

D
ay

 4
R

ea
di

ng
 GD

ay
 4

R
ea

di
ng

 E

D
ay

 4
R

ea
di

ng
 F

D
ay

 4
R

ea
di

ng
 C

D
ay

 4
R

ea
di

ng
 D

D
ay

 4
R

ea
di

ng
 B

D
ay

 2
R

ea
di

ng
 A

D
ay

 2
R

ea
di

ng
 B D
ay

 4
R

ea
di

ng
 A

D
ay

 4
R

ea
di

ng
 D

Su
m

m
ar

y
3f

Su
m

m
ar

y
3d

Su
m

m
ar

y
3b

Su
m

m
ar

y
2d

Su
m

m
ar

y
2b

Su
m

m
ar

y
1b

W
o
rd

s:
 5

0
0
0

S
u
m

m
ar

ie
s:

 1
2
5

W
o
rd

s/
 S

u
m

m
ar

y
:

1
6
0

M
o
d
if

ie
d
 S

u
m

m
m

ar
ie

s:
 1

1

M
o
d
if

ie
d
 W

o
rd

s
/

M
S

:
2
0

D
ai

ly
 R

ea
d
in

g
s:

 4

W
o
rd

s/
 D

R
:

6
0
0

M
o
d
if

ie
d
 D

R
s:

 1
1

M
o
d
if

ie
d
 w

o
rd

s
/

M
D

R
:

7
5

FI
G
U
R
E
3.
4

“Y
ou

D
on

’t
K
no

w
W
ha
t
Y
ou

’r
e
M
is
si
ng

”

28 ■ Procedural Storytelling in Game Design

Finally, Down the Rabbit Hole (Figure 3.5) was a distraction engine
that allowed readers to follow tangents as they read, and then follow
those tangents to deeper tangents, eventually dumping them out of the
story into the internet at large if they kept accepting the offer to follow
their own drive. It accelerated the author’s loss of control over the
readers and the readers’ loss of narrative closure in the face of outside
temptations for their focus and time.
Looking at my beautiful, ugly, chart-based baby, I realized that

I hadn’t so much innovated in game narrative as I had destroyed
reading. I called the collection Bad Dreams and decided it was complete
as it was. The structures themselves communicated volumes, but most
of what they had to say was “help me”. They were a series of story
prisons, and I don’t believe in filling a prison just because you built it.
Bad Dreams preoccupied me for a full month of InterProject, and

I came out of it feeling very accomplished, but with not a word written,
no characters, no drama—no actual stories. The real work of making
stories—not just structuring them, but populating them with all of these
important things, testing your assumptions, and letting the results
change all your best plans—is messy and unpredictable. It doesn’t
reward us with the reassuring click of plans sliding into place; it gives
questions, challenges and emptiness demanding to be contemplated or
filled.
Most writers love the feeling of having already written. Second best is

the feeling of being about to write—perhaps with a trip to the notebook
store for fresh stationery. The discipline of narrative design allows us to
consider living our whole lives in this about to state, replacing the
drudgery and self-doubt of committing to specific details with intellec-
tual planning for how a story ought to go. Innovation is next to
procrastination.
Thank goodness for reality. In January 2012, I was relieved from

InterProject by an invitation to write for Assassin’s Creed Liberation. Its
needs and deadlines left no time for theory. We had to get straight to
work.
Although the pressures were greater, this was, in many ways, easier.

I immediately fell in love with the character of Aveline de Grandpré.
Born in New Orleans in the 18th century, her father was a wealthy
French merchant, and her mother had been a slave. Although Aveline

Generated Right in the Feels ■ 29

Ta
ng

ea
nt

Ta
ng

ea
nt

Ta
ng

ea
nt

Ta
ng

ea
nt

Ta
ng

ea
nt

Ta
ng

ea
nt

Ta
ng

ea
nt

Ta
ng

ea
nt

Ta
ng

ea
nt

M
ad

do
ni

ng
M

is
in

fo
rm

at
io

n

Co
nf

us
io

ng
Co

nt
ra

di
ct

io
n

A
m

bi
gu

at
io

n
Re

fe
re

nc
e

M
ys

to
ry

,
D

ee
pe

ni
ng

Fr
ag

m
en

t

U
ns

ub
st

an
tia

te
d

O
pi

ni
on

D
o
w

n
 t

h
e

R
ab

b
it

 H
o
le

W
o
rd

s:
 5

0
0
0

P
ri

m
ar

y
 N

o
d
e:

 1

P
N

 W
o
rd

s:
 1

0
0
0

S
ec

o
n
d
ar

y
 N

o
d
es

:
5

S
N

 w
o
rd

s:
 4

5
0

T
er

ti
ar

y
 N

o
d
es

:
9

T
N

 W
o
rd

s:
 2

0
0

T
h
e

al
w

ay
s-

re
li

ab
le

 I
n
te

rn
el

Fa
nt

as
tic

al
st

or
y

FI
G
U
R
E
3.
5

“D
ow

n
th
e
R
ab
bi
t
H
ol
e”

30 ■ Procedural Storytelling in Game Design

was armed to the teeth and educated in the art of assassination, she had
three father figures who watched protectively over her every breath.
That must be annoying, I thought, and from this seed, her character
grew.
Liberation, like other games in the Assassin’s Creed franchise, ran

a linear adventure story through an open world game, effectively
challenging two narrative structures to co-exist. Open worlds, as we
have known them so far in games, are largely about a feeling of getting
lost in a world larger than oneself and then through exploration, and
often combat, learning and mastering that world.
Meanwhile, adventure stories in games typically take their cues from

the seventeen-step programme of the Hero’s Journey. As handy as the
Hero’s Journey is for analysing one specific category of Western stories,
players stepping into an open world on their own terms are less
interested in completing a seventeen-step programme than testing the
world, perhaps even breaking it, to come to their own understanding.
For many people, Skyrim is about adopting pets or herding cheese, and
questing is how they pass time until more world (and more cheese)
becomes available. I’m no stranger to this player perspective. Even after
working on the game, I played Assassin’s Creed Black Flag to 53%
completion by sailing around the world on the winds of my whims,
consciously avoiding the linear story.
If you’re going to run a linear story through an open world game

(and I don’t necessarily suggest that you do), you can’t count on having
the players’ focus, and you don’t have control over how they spend their
time, so you lose the ability to pace their experience in any meaningful
way. How, then, do you get them to advance and perhaps even one day
complete the story?
On Liberation, it would have been easy to get lost in the bayou and

never find our way out, but character guided us through production;
more than that, love of character. Aveline led with her heart and
made decisions swiftly. She could be as ruthless as she was under-
standing. She was a manipulator with a heart of gold who used
others’ assumptions and perceptions to shapeshift between the roles
available to her in her time: assassin, lady, slave. In each of these
guises, she challenged players to re-evaluate her world and their own.
She was real and important to us, and the more we invested in her,

Generated Right in the Feels ■ 31

the more we trusted that players would follow her where the story
needed to go.
My own story next led me to Assassin’s Creed: Black Flag and then

to Freedom Cry, with Adéwalé and the Maroons of Saint-Domingue
laying the foundations of revolution, and from there, to a series of
dismaying events, depositing me in personal turmoil.
Caught in the emotional muck of recovery, I turned again to my old

experimental, tinkering ways—but now with characters like Aveline and
Adéwalé fresh in my heart. Working on a new game, for a prospective
audience that would prefer to tend and befriend than stalk and assassinate,
we set about asking new questions and testing our theories. In this game,
every character in the world would be generated, except for the player
character. Players would have the freedom to experiment with style and
preference and change themselves as often as they desired. Any sense of
story or progression would come down to activities players chose to engage
in, the steps necessary to undertake them, and the rewards they received.
With so many moving parts, no traditional stories to speak of, and the
players’ own identities up in the air, it was essential to find something for
players to connect with emotionally, to anchor the experience.
Generating any quantity of believable characters you can feel and

connect to is a challenge. Narrative generation falls prey to the same
risks of repetitiveness that other types of generation do. The 10,000
Bowls of Oatmeal problem, as it applies to character generation, can
yield a series of quirky quest-givers, each one with dialogue you want to
skip, as easily as a series of equally ambitious enemies, indistinguishable
but for their win-loss records and a birthmark here and there.
Much like Aveline’s character was deeply knit into the mechanics of

her persona system, designers like Emily Short (author of Chapter 28)
have written about the necessity of linking generated characters to
mechanics.1 This anchors each character within the player’s experience,
making the characters essential, in practical terms. But how to make the
player feel as attached as if they were real?
My project was small and experimental; it hadn’t even been green-lit

yet, so we needed to find answers on a shoestring budget. I began to
wonder about the smallest, sparsest, most sketchy set of details we could
generate that would make individual non-player characters seem real—
to show that we cared who they were and what motivated them so we

32 ■ Procedural Storytelling in Game Design

would want to get to know and befriend them, or even challenge and
oppose them? What if it were less important how a character was
defined and more how players attached to them? Could we elicit an
emotional response to a lightly drawn character, as an artist can often
make us feel the important intentions of a subject as strongly from
a few loose brushstrokes as with a highly realistic rendering?
We already know that players build their own ideas of character,

somewhat independently of what is authored. In the time between
writing and editing this essay, I’ve seen Shadow of the Tomb Raider
completed, promoted, and released. What has emerged are wildly
differing portraits of Lara Croft. Some critics read her as an inconsistent
narcissist. For the community, she is flawed but caring and richer for
her internal struggles. There is only one Lara on screen—one set of
voiced dialogue, art, and cinematics, no branching storylines creating
a common gameplay vocabulary for all players. However, she lives
differently in the hearts and minds of different individuals. So, we
know players have a great natural capacity and enthusiasm for attach-
ment and interpretation. Why not provoke them to use it on purpose
and shift some of the processing power to players’ minds, so to speak.
Back on my experimental project, I turned away from the largeness

and expansiveness of open world thinking and tried instead to focus on
the intimacy of getting to know a person. How many people does each
of us know very well? In a crowd, do we experience each other as
people or obstacles or both? I read about gossip and small talk and the
many almost subconscious ways humans have of communicating and
negotiating relationships. I thought about the ways we express and
define ourselves, the masks we wear, and the accidents that cause us to
show our hands, revealing our true character.
I devised a simple test. I wanted to know what emotional details

people would connect to instantly. Using only text, I tried to strip
away as much writing or dialogue style as possible. I created a simple
tool in Twine (and later in Javascript) for generating simple lists of
characters and their attributes. Then I let people hit the “generate”
button and read and react to the skeletal details that appeared on the
screen.
It soon became apparent that the list really didn’t need to be long. In

fact shorter was better.

Generated Right in the Feels ■ 33

The lists looked something like this*:

From a grid like the one above, people not only related to the
characters outlined, but also began to tell their stories to themselves
and ask questions. Depending on the participant, Nat might have been
an immigrant who worked hard to prove themselves. They might be
introverted because they were shy or because they felt judged. Maybe
they’d bullied their childhood friend under peer pressure, to fit in. Small
changes to details made a big difference. If Nat’s age changed from 28
to 23, then maybe they’d had their kids young and quit school. Maybe
their marriage had impacted their confidence. Change their dominant
personality trait from introverted to extroverted, then maybe they’d
played the bully to get attention, rather than to escape it.
Too many details and Nat would turn back into a bowl of oatmeal.

Users would spend more time pressing the button and trying to figure
out the system and the logic behind the generated details. A sparse level
of detail was more likely to tap into players’ creative minds and provoke
them to consider the person behind the list.
For our experiments, this was all we needed to know. If sparsely drawn

characters could draw players’ attention, the next set of experiments could
begin to tackle how to spawn more and deeper characteristics, as players

Name: Nat

Age: 28

Gender: Non-binary

Dominant trait: Introverted

Favourite colour: Purple

Kids: 2

Worst fear: Spiders

Strongest childhood memory: Bullied one friend only once and immediately regretted it

Ambition: Go back to school and get a masters’ degree

Emotional need: Confidence

Hobby: None

(*Re-creation. Actual lists are covered by NDA and locked away in a dusty server
somewhere.)

34 ■ Procedural Storytelling in Game Design

attempted to communicate and get to know characters better. It didn’t
matter if everyone read Nat the same way, or even if everyone cared about
them equally—or at all—because even that was true to life. How often do
we read each other accurately, in reality? The fact that we have to try so
hard to understand each other is probably why we like stories so much in
the first place.
Nat’s project soon found an end, in its own unique and saddening

way. We had no choice but to move on as quickly as if an unseen player
had pressed the “regenerate” button. Much like Aveline, Adéwalé and
Lara continue to travel with me in a small, comfortable compartment in
my heart, so have the principles of Nat’s game.
Innovation isn’t the hard part of game narrative. Games can train

players to explore by expanding and conquering or by training their
focus to interpret and understand. Any structure might be the right one,
and every structure can be so distracting that we forget what really
matters. The difficulty in game narrative is the same thing that’s hard
everywhere: understanding and connecting to people, be they fictional
characters, other players, developers, or even ourselves.

NOTE

1 https://emshort.blog/2016/09/21/bowls-of-oatmeal-and-text-generation/

Generated Right in the Feels ■ 35

https://emshort.blog/

This page intentionally left blank

CHAP T ER 4

Adapting Content to
Player Choices

Jurie Horneman

B ecause I wear a designer hat as well as a technical hat, it has taken me
an embarrassingly long time to understand that the fact that you could

generate something doesn’t mean that you should. While it is certainly
possible to drive your creative goals from a technical idea, it is generally
better to drive your technical ideas from a creative goal: Figure out what
you want to achieve, then build that.
What is the reason for using procedural storytelling or procedural

content generation in general? It can be to create the unique appeal of
infinite worlds (Elite, No Man’s Sky) and extremely deep possibility
spaces (Dwarf Fortress), replayability (Spelunky, roguelikes), or evocative
juxtapositions and the aesthetics of randomness (Twitter bots). There
are other, equally worthy, reasons. I am interested in procedural story-
telling in order to adapt a game and its story to player choices (and to
other dynamic elements such as game state, as in the current state of the
game world). This is not one of the reasons I listed above for pursuing
procedural approaches, and the methods to achieve these goals are not
always seen as “procedural.” Adapting to player choices allows for more
player expression: It lets players have game experiences that are
uniquely tailored to them, that show them the deeper consequences of
a wider range of actions and is particularly important in open world
games. By definition, such games give the player more choices, even if
just spatial, but pacing and controlling progression are much harder

37

when you cannot know where players will be or what they will
encounter in which order. Procedural techniques can help solve this.
No matter what deep learning demos promise, it is not possible to

generate every kind of content. The resulting quality may not be high
enough, or the development costs may be too high. Additionally, if it
does not get you closer to your creative goals, it does not make sense to
generate something instead of using pre-created content. Making
a game that adapts to player choices while aiming for a high level of
execution quality means you have to mix pre-created content with
dynamic or generated content. That creates a particular set of challenges,
which this chapter will discuss.

CHOOSING WHICH PARTS TO ADAPT
In order to make a given kind of content adaptive, you first have to
identify elements or aspects that tie it too much to the context in which
it appears and make it hard to adapt the game to the player’s choices.
(“Content” is a vague word, but many of the principles in this chapter
apply to many different kinds of content: levels, text, graphics, etc.)
I will use missions for my examples, because missions appear in many
games in some form or another, they are a powerful way of structuring
the player experience, and in games that have them they are where the
story happens. Spatially linear games typically don’t have missions—
sequences of gameplay objectives—because they don’t need them as
a separate concept.
Let’s say you have a mission that involves finding a witch to get

a magic potion, in an open world game where players can go anywhere
they want whenever they want. This means that unlike in linear games,
you don’t know for sure where players will be when this mission makes
sense in terms of story progression and pacing.
Spatial linearity is the easiest solution for solving the problem of

predicting where a player will be in a given point of the story. It works
very well! Naughty Dog always knows where Nathan Drake is at any
point in the story of an Uncharted game, but in open world games it
is harder. Instead of creating missions to fit locations you know ahead
of time, it is useful to be able to adapt the content of missions to
a dynamically determined location. You could make multiple copies of

38 ■ Procedural Storytelling in Game Design

a mission, one per location, and select those at runtime. This is a brute
force approach that is absolutely fine in certain cases but generally ends
up being both costly and unwieldy, because you have to create and
maintain all of those copies. So let’s say you want to adapt your witch-
finding mission so it can work in a forest as well as in a desert. How do
you do that?
Let’s start with a simple first step. Many games use objective texts to

tell the player what to do: “Find the sword,” “Kill the evil overlord,”
etc. In our case, we might want to tell the player “Search for the witch
in the woods” or “Search for the witch in the desert.” The name of the
location ties the objective text to the location. You can use a text
substitution system, so that you write an objective template such as
“Search for the witch in the %location%.” Then, when you need the
actual objective, you look at the location in which the mission needs to
happen and replace the magical word “%location%” with “woods” or
“desert.”
Text substitution is pretty well understood. In English you only need

to pay attention to a few simple grammatical rules. In other languages,
especially gendered ones, things get a lot harder, but that is outside the
scope of this chapter. Systems like Kate Compton’s Tracery, James
Ryan’s Expressionist, and Bruno Dias’s Improv offer more sophisticated
ways to do text substitution but essentially are still templates plus
elements that get injected into those templates. Note that the template
“Search for the witch in the %location%” is pre-created content, as are
“woods” and “desert.” The computer does not understand the concept
of searching, or witches, or locations, or deserts. It’s just replacing some
letters in a sentence.
So we identified the element (the location name) that made the

content (the objective text) not adaptive to the context (where the
mission can occur), and then we pulled that out so it can come from
elsewhere, be that generated or selected from a set of pre-created
content. By doing so, we made it possible to adapt the content to
a player choice (where the player went). This is the general principle
to make content adaptive, and it applies broadly. Take Blizzard’s multi-
player game Overwatch, for example. At the end of each game, players
see the “Play of the Game,” a short clip of some particularly impressive
feat a player performed. This clip is preceded by a highlight intro,

Adapting Content to Player Choices ■ 39

showing a spiffy animation involving the hero the player selected.
Players can unlock and equip both “skins” (different looks for their
heroes) and highlight intro types. This means that the highlight intro
players see adapts to two player choices: the hero skin and the highlight
intro type.
It might surprise you to think of a fairly straightforward real-time

animation as adaptive content or procedural storytelling. But it is; we
just don’t tend to think of it that way anymore. When I was making
games in the ’90s, we would have killed for the ability to show an
arbitrary animation on an arbitrary character. I worked on 3D character
animation technology back then in order to make that kind of thing
possible. A 3D renderer is a system for procedurally generating anima-
tions and images.
Let’s imagine we want to use an NPC to give our mission to the

player. One approach would be to create a mission giver per setting and
then activate the one you need. You create a weary explorer in the
tavern near the forest who tells you about the clearing where the witch
dwells. Then you create a mysterious traveler in the oasis who tells you
about the cave out in the desert where another (or the same) witch lives.
And so forth for any other setting that makes sense for your game.
Then you use a global variable to store the setting in which this mission
was activated, so it gets spawned where the player is and then never gets
spawned again. We also need to make sure the witch can actually be
found, so we need to define a position per setting where the witch hangs
out and then activate the right one. This approach—selecting content
based on player choice—is very simple and doesn’t require any compli-
cated technology. It is easy to understand, it works, and it makes the
mission adaptive. It is easy to underestimate simple techniques. Proce-
dural storytelling does not need to involve complicated technology.
This example involved creating multiple copies of a part of the

content (the mission giver) and selecting and activating the right
version at runtime. In this case it’s OK because making multiple copies
of a mission giver is usually quite cheap, but it’s possible to take it
further. Perhaps there can be a fixed mission giver in any tavern, like
the owner—already a common thing in many games. Or perhaps any
character in a tavern can be a mission giver. Or you can select or
generate a mission giving character that fits the locale. The mission just

40 ■ Procedural Storytelling in Game Design

needs an NPC who can give missions, it doesn’t matter much who it is,
because mission giving usually involves just a few lines of text. Loca-
tions can have mission givers or positions in which mission givers can
be spawned. By teaching the computer what a mission giver is, we can
easily make our missions even more adaptable.
However, everything we do to make our witch or mission giver more

universally useful also makes it less specific. Some missions rely on
having to bring a particular ring to a particular place to please
a particular wizard, not just any random person in a bar. The above
techniques for making mission givers adaptive are not general solutions
for procedural storytelling, but rather powerful tools that are applicable
in many situations. By using these tools appropriately, you can balance
implementation effort and reactivity against the uniqueness of the
experience. I will come back to this later in this chapter.
What more can be abstracted and factored out of missions? Since

time immemorial, level designers have told stories in games by tying
story progress to spatial progress. The player opens a door or walks into
some invisible volume and suddenly “story happens.” This is, for better
or worse, one of the bedrock techniques for telling stories in games, but
it’s limited and laborious to set up. Whenever you want to change your
story you need to adapt your space, and vice versa. If players don’t
move where or when you want them to, your pacing breaks down. The
more spatial choices you offer the player, the more convoluted your
story logic becomes.
Some types of story progression can be decoupled from spatial

progression, using a technique I call a story daemon, “daemon” being
a general term in computer science for an invisible entity that does
things for you. In 2016 I built a little interactive fiction experiment with
a story daemon called the Creepifier, which is a bit like Left 4 Dead’s AI
Director only for slowly building dread. Its job is to introduce creepy
details into scenes at an increasing pace. When it is active, it looks at its
internal “creep clock” to see if it’s time to show something creepy. If so,
it looks at the tags of the current location and tries to find a matching
entry in its library of “creep blocks” Then it injects the creep block into
the description of the location. Creep blocks are typically just para-
graphs of text (“You hear a scurrying noise behind the walls.”) but they
can also contain new player options (“A book falls open by itself. Do

Adapting Content to Player Choices ■ 41

you read it?”). At every turn, the creep clock slowly increases until
something creepy happens at every turn.
It is easy to imagine the Creepifier modifying or injecting other types

of content: visual effects, music, and sound effects, but also combat
scenes. The Creepifier can be turned on or off as the story requires, and
it can be combined with or interact with other story daemons.
A companion NPC who comments on what is happening can be imple-
mented as a story daemon, and such an NPC system should interact
with the Creepifier.
My Creepifier demo was extremely simple. Complications arise when

you try to do this at higher levels of execution quality. You have to deal
with repetitiveness and unintentional patterns as with any procedural
technique, and it becomes tricky to make sure all creep blocks match all
situations they can appear in—all problems I will discuss later in this
chapter. The important thing to realize is that managing this complexity
is an essential difficulty. Because we want to give the player more
choice, and because at some point handling that manually no longer
scales, we need to teach a computer how to help us, and that means we
need to express our problem in a way a computer understands, which
means we need to understand it deeply ourselves. The problem we’re
trying to solve is difficult, and we’re making the computer help us; that
costs time and effort. This is one more reason to be clear about the
required investment and the expected return.

COMBINING BITS
We’ve made content adaptive by identifying elements that tie it to
a particular context and found a way to separate those out. To create
the final content when the game needs it—to adapt it to the current
context or game state—you typically need to select or generate the right
bit of sub-content, and combine it with a template.
For our objective text example, this is simple. We find the objective

text template (“Search for the witch in the %location%”) for the
mission, then find the name of the target location and insert it into the
template. It gets more interesting when you move away from a strict
one-to-one relationship between game state and elements. In the system
I built for Mainframe,1 the interactive fiction game Liz England and

42 ■ Procedural Storytelling in Game Design

I made for the ProcJam game jam in 2015, it was possible to say “Give
me a player option leading to a scene with a given set of properties.”
Those properties were expressed using tags. For example:

<injectOption tags=“search, electrical”/>

would insert a player choice leading to a scene that was marked with the
tags “search” and “electrical.”
Tag-based content selection is simple yet powerful.2 More sophisti-

cated approaches exist, such as Valve’s rule-based system for selecting
dialogue lines or Irrational Games’ gameplay pattern-matching. In 2011,
I worked on an unreleased action role-playing game that used a tag-
based approach to generate dungeons. Instead of generating the dun-
geon topology using some algorithm, we pre-defined it in a map editor.
For each room of the dungeon, we added tags that specified which kind
of room we wanted, for instance: “spooky,” “corridor,” “jungle,” “exit to
the east.” This declarative approach did not allow us to generate an
infinite amount of dungeons, but it did make editing dungeons extre-
mely quick. The engine translated our templates into actual dungeons
using a big collection of pre-defined dungeon rooms. We were able to
specify that some tag requests must be satisfied, while others were nice
to have. This meant that the system tried its best but had an acceptable
fallback. We will see later in the chapter why that was important.
Common concerns with content selection algorithms are avoiding
unnecessary receptiveness and unintentional patterns, as well as imple-
menting a weighting system so more remarkable bits occur less often.
This is also quite common in NPC bark selection—and what is that if
not a procedural storytelling system that involves selecting content?

CREATING THE RIGHT BITS
Selecting the right bits of content is one part of the problem. Deciding
which bits of content to create is another. As a first step, you want to
avoid having your system ask for a content you didn’t provide. In our
witch mission example, if we try to create the mission in a place where
we don’t have a location name, a mission giver, or a witch position, we
will fail. In the action role-playing game I mentioned earlier, the game
would crash hard when the dungeon template asked for a room that

Adapting Content to Player Choices ■ 43

didn’t exist. We used automated testing to make sure those cases would
never occur and the “nice to have” tag type to make sure we were not
over-constraining our dungeons.
The next step is to build the tools that allow you to see where you’re

missing content or where content is too sparse, so that you can fill your
buckets of content bits appropriately.3 Then, on the content creation
side, you need to handle context. How many situations should a bit of
pre-created content be able to function in? Which contexts can it
appear in? Context can be implicit or explicit. With implicit context,
the content creator knows which situations a piece of content can
appear in and makes sure it always works, but there’s no system to
enforce this and sometimes no easy way to find out what the context is.
This is one of the hard things about game writing: You have to know all
the situations in which a line can appear and make sure it works in all
of them.
With explicit context the content creator specifies in which situa-

tions a piece of context can appear, so the computer knows her
intentions. This is what we did for the dungeon rooms in the action
role-playing game. You get more control but it is still hard, because
you need to think through the permutations and express them in
a way the computer understands. The more dimensions of context
a piece of adaptive content has to react to, and the more those
dimensions are intertwined, the harder it gets to templatize or
proceduralize that content. Our mission giver needs to tell you
about the witch in the woods (“You’re looking for the witch? She
lives in the forest!”). If you were just writing this in a story, he would
probably also comment on the state of the main character, the
weather, etc. (“You look like you’ve had some adventures on the way
here. The monsters always come out in the rain.”) He might say
something that is emotionally relevant to the main character’s arc or
that refers to the state of affairs, which the main character is in the
process of changing (“The attacks have grown more desperate lately,
as if whoever is behind them is making one more attempt to wipe us
out.”) You can do that all that in a few lines. You can even choose to
not use dialogue, to skip the mission giver, or even to skip the entire
mission, depending on what the story needs. Text has infinite nuance,
and this makes adapting it extremely hard.4

44 ■ Procedural Storytelling in Game Design

PAPERING OVER THE SEAMS
Often, the connection between events is both crucial for high execution
quality and hard to adapt dynamically. Consider a remark by an NPC
between two missions. Probably you would want them to comment on
what just happened, on what comes next, and on the causal relationship
between those things. Branching missions, or different ways of ending
missions, add even more context to adapt to (e.g., “You convinced the
witch to give you her monster-killing potion? Excellent! Now it should be
easy to wipe the monsters out” versus “You didn’t get the witch’s potion?
Well, you can still kill the monsters, but it will be harder.”) The same
goes for transitional paragraphs in interactive fiction. These are small
bits of text, but they can get complex.
The easiest way to avoid the problem is by not having any transitions.

Break things up and make them modular, reducing the dependencies
between them. Heavily dynamic text-based games like Dwarf Fortress
use more functional text that doesn’t flow nicely: “Endok sketches
pictures of stacked leather. Endok has begun a mysterious constriction.”
It is effective, since the player can absorb the information in the text
more quickly, if less immersive. Fallen London solves the same problem
on a higher level by breaking the entire experience into modular bits
called storylets that intentionally have no connection to each other,
leaving it to the player to imagine the connections. In games that use
continuous time (in other words, most games) this is not a solution that
is easy to adopt. Additionally, the connections between events are the
key to story. “The king died and then the queen died of grief” says
something different from “The king died. The queen died.” Leaving these
connections to the imagination of your audience, as Fallen London
does, is a valid artistic choice but not a universal solution.

CONTROL OVER SPECIFICITY
From a highly reductive perspective, and very generally speaking, the
point of both stories and games is to not bore the audience, to
continually surprise them with the new and unexpected. This is
a challenge for procedural systems, which inevitably involve repetition
and are prone to creating bland content, something Kate Compton
has called the 10,000 Bowls of Oatmeal problem. The best way to deal

Adapting Content to Player Choices ■ 45

with this risk is to make sure that you have control over the degree of
“proceduralness” of your content and that you plan for content with
multiple degrees of specificity. Maybe your main missions are all
hand-authored with highly specific content. But even when your side
missions are more generated, make sure to include some hand-authored
ones to mix things up. Avoid being locked into all-procedural con-
tent or putting too much of the weight of your game onto procedural
elements.
This is related to how NPC barks are typically designed. Instead of

making all barks equally likely, AI voice designers and bark writers tend
to weight barks differently so that the remarkable ones happen less
frequently than the highly reusable ones. The key is that they have the
possibility to shape things so that the repetitiveness of the most
common barks is leavened by less common ones.

A COMPLETELY NEW WAY OF CREATING CONTENT
Perhaps the biggest challenge, when you are part of an existing team
with previous experience shipping games, is dealing with a completely
new way of creating content. Procedural or systemic content of any type
often involves taking direct control away from content creators and
replacing it with indirect rules and systems. This can understandably
create anxiety: The tools you spent time and effort learning to master
are taken away and replaced with new tools that work very differently.
Because these tools are new, they often are not as sophisticated as the
old ones.
An additional phenomenon with procedural content is that integra-

tion and progress work differently. Normal, static content—3D models
of rocks, say—has almost no interdependencies. Each rock can be
modeled in any order, the work can be divided over people arbitrarily.
It behaves linearly in terms of planning. Once you’ve done 30% of the
work, 30% of the rocks are in the game. Additionally, each rock can
easily be integrated into and seen in the game. This is famously different
for programming, which can have massive interdependencies and pro-
gress is not linear at all. It is fairly typical to have done 90% of the work
and have nothing be visible or working. This is why project manage-
ment for software is challenging.

46 ■ Procedural Storytelling in Game Design

Procedural content is a combination of the two. You can build
systems that are immediately visible but produce bland content. Or all
the content is there, but the systems that use them aren’t there yet.
A tweak to an algorithm or someone adding some data can completely
change the game. Progress and visibility are often much more non-
linear than with non-procedural content. This can be disconcerting for
people and needs to be managed accordingly.
Procedural approaches are a fundamentally different way of develop-

ing games and slice through traditional workflows and across disciplines
in unexpected ways. Developing ways of conceptualizing, measuring,
and evaluating procedural work is a vital challenge. It is not enough to
consider what a game does at run-time; it is equally important to design
the creative process a team uses to develop games procedurally. Gray-
boxing and metrics for level geometry are common techniques now. As
an industry, we’ve figured out workflows for combining level art and
gameplay geometry. But what are the equivalents for games that make
heavy use of procedural techniques? What tools and workflows do
content creators need to test their work in all relevant contexts? What
metrics do we need to evaluate whether we’ve made “enough” content,
or the right kind of content? As an industry, we are slowly learning how
to do this, but we still have far to go. New approaches are being
invented here and there and will spread in postmortems, but for now
it remains a crucial challenge that should not be underestimated.

THE BIG PICTURE
On a higher level, it’s important to not think of procedural storytelling
as a problem we can solve the way other technical problems can be
solved. 3D rendering is by now a matter of engineering: How can we get
render these models in a more efficient way? Procedural storytelling is
not one well-defined problem; it is a thousand differently designed
solutions. This is an art not a science. You cannot “solve” storytelling
in games.
The majority of storytelling techniques we have developed, over

millennia, are for non-interactive media or, more precisely, for media
where we have exact control over the time, space, and character of the
audience’s point of view. This includes techniques in stories themselves,

Adapting Content to Player Choices ■ 47

for instance for creating tension, as well as our techniques for thinking
about and developing stories. These don’t work well in games, because
the player can make choices that affect outcome, because time in games
typically advances in a continuous manner, because players have control
over their positions in space, but also because games are about systems
and the potentials they enable.
Using time-honored storytelling techniques, we are able to arrange

events and impressions in a precise manner that reliably evokes power-
ful emotions. Adapting this to games leads us to concepts such as
branching and non-linearity. This a top-down approach to storytelling
in games: breaking up the player-facing experience into bits. We can
also create systems from which conflicts and other interesting situations
arise. This is a bottom-up approach: simulating the elements from
which stories are made.
However, we have not yet mastered making the top-down and

bottom-up approaches work together. Bottom-up simulation does not
generate the emotional experience of top-down storytelling; top-down
storytelling is not as dynamic as simulations. A few years ago, I joked that
the three core tools of storytelling in games are cut-scenes, invisible boxes,
and environmental storytelling, but I soon realized it was not a joke.
This conflict between top-down and bottom-up is one more reason

the most fruitful approach to procedural storytelling involves combining
bits of pre-created, generated, and systemic content based on dynamic
context.

NOTES

1 You can play the game at http://mainframe.intelligent-artifice.com.
2 While simple to understand at implementation, at larger scale tags can

become unwieldy. I have written more about the pros and cons of tag-
based content selection in Game AI Pro 3.

3 There is a lot of interesting research happening in this space in acade-
mia, as well as in interactive fiction. I recommend following the work of
James Ryan, Emily Short, Jacob Garbe, and Graham Nelson.

4 Because text to speech is still very poor and speech has its own meanings
and nuances, speech is the hardest form of content to generate of all.

48 ■ Procedural Storytelling in Game Design

http://mainframe.intelligent-artifice.com

CHAP T ER 5

Ethical Procedural
Generation

Dr. Michael Cook
Queen Mary University of London

T here are a whole bunch of different things to worry about when
you make a procedural generator. Will my generator ever make

a mistake? Does it produce a lot of boring things? How much time does
it need to generate something? Sometimes it can be so tricky to get your
generator working that simply getting it to produce anything feels like
a huge accomplishment. Worrying about what it’s producing, why it’s
producing it or what others might think about it can get lost in the huge
relief and satisfaction of finally seeing little dungeons, poems or stories
coming out of your computer.
As generative software grows in popularity, we’re seeing its ideas used

by more people in lots of novel ways and for lots of exciting new uses.
These developments are encouraging and inspiring, but they also makes
it even more important that we take the time to think about the broader
impact of this technology on people and society. In this chapter we’re
going to look at the ethical issues that can arise when making proce-
dural generators and give you some things to keep in mind when you’re
making your next generator. They won’t all apply to every person and
every project, and you may not agree with every single thing we suggest,
but with luck just reading through this chapter will give you a new
perspective on procedural generation and help you think about this
awesome art form in a different way. Along the way we’re going to
travel to some pretty extreme parts of the generative world and pose

49

some open-ended questions about what we should let generators do,
how we should talk about them and how we should let them talk about
the world.

TALKING IN CODE
A procedural generator encodes a lot of different ideas and knowl-
edge into a tiny package of rules and procedures. Each time we run
it, those rules and procedures unpack bits and pieces of the knowl-
edge we fed in and reassemble them into something new. Some of
the ideas we feed into our generator are technical, and a lot of this
book is given over to the broad and complicated technical chal-
lenges that surround procedural generation. We’ve already seen
some of this in chapters about modular design and balancing
chaos with predictability. Other ideas are aesthetic or artistic in
nature. Procedural generators encode our ideas about how we think
games should be designed: they represent what we think a good
dungeon looks like, how a good story should end or what makes
a beautiful colour scheme. They’re little digital apprentices that we
train and then trust to finish bits of our artwork in the homes of
the people who view them.
Creating a procedural generator is a bit like making a work of art—

some of the things we put on the canvas are intentional, but other
things we paint on might be unconscious acts we don’t give much
thought to. Some might simply be mistakes. When we tweak the
maximum size parameter of our dungeon generator, we most likely
know the effects it will have on our level difficulty or how long our
game takes to play—that’s an example of a conscious decision. But
there are lots of ways in which we can introduce accidental features to
our generators, sometimes without even thinking. The tricky thing is
that it can be very difficult to realise this has happened, because
generators are often quite complicated and are designed to generate
huge quantities of content. If there’s something wrong in the system it
might be hard to tell without looking at thousands and thousands of
examples.
Let’s explore an example of a system that ends up with an unexpected

feature in it. Suppose we’re making an RPG level set in a spooky

50 ■ Procedural Storytelling in Game Design

graveyard, and we want the player to be able to read randomised
inscriptions on each tombstone. We decide to do this using a few
simple patterns, so we write a few templates for gravestone patterns,
like “#NAME lies here, died #YEAR”. Our templating system knows
that when it sees #YEAR it replaces it with a random four-digit number,
and when it sees #NAME it generates a random name by sticking a first
name and a last name together. We give it a try and it works great—
random names appear with random years attached. We’re getting bored
of the templates we’ve written, though, so we add one more, an
inscription for couples buried together. It reads: “#NAME and #NAME,
reunited in love once again, #YEAR”. As a quick exercise, you can
imagine a few possible outputs for this template in your head, or maybe
write them down.
This template is a bit more interesting than the ones with only one

name. Take a moment and imagine how we might implement the
“#NAME” generator. You don’t need to think about it in terms of code—
imagine how you might do it with pen and paper. Depending on how
we think about relationships, gender and sexuality, our first instinct
might be to write two lists of names: one list of names that sound like
they might be associated with “male” identity, and another of names
that sound like they might be associated with “female” identity. Another
approach is to simply have one big list of names and not worry too
much about separating it out into a binary of any kind. You might not
even think about this distinction—maybe you just used one list because
it was quicker and you wanted to save time. But this decision, whatever
you do, is going to have an impact on what this graveyard says about
sexuality and gender in your game.
To see how, let’s continue through our example. Suppose we use

our two separated name generators for our new couples’ template
and generate a gravestone or two. The individual examples will make
sense: “Jack and Jane, together again at last, 2016”. They’ll look fine,
and you might even read a dozen or so while walking around. But
“Jack and John” or “Jane and Lucy” will never appear—name pairings
that might suggest non-heterosexual relationships. Because of the way
we’ve structured the data in our generator, our graveyard is now
presenting our game world in a way that implies that only heterosexual
relationships exist.

Ethical Procedural Generation ■ 51

Of course, this might be exactly what you want for your game!
Perhaps you want to show the player that only heteronormative couples
are afforded a proper burial in this town, and it becomes an important
part of the plot. What matters here isn’t the message sent by the
generator (although for what it’s worth, we highly recommend the
single namelist approach). What matters is whether you as a creator
realise what message your generator is broadcasting, because that means
that you’re in charge and able to assess whether that message is some-
thing you’re happy with sending out into the world. Procedural gen-
erators can be powerful tools—they can amplify our ideas thousands of
times for every single person who plays our games, but it’s important to
know what it’s amplifying, and our little gravestone example is a case in
which we might be sending a message we didn’t expect to.
How can we stop these undesired features from appearing in our

generators or find them when they appear? For this specific kind of
problem, where the structure of our data or code is to blame, a good
rule of thumb is to simply never introduce distinctions that don’t mean
anything in your game. If gender doesn’t affect your player or your
game mechanics, there’s no reason to build it into the systems of your
game. The more variables you introduce, the more likely there’ll be
something you didn’t plan for, so if something doesn’t need to be
defined in code it’s safer to simply sidestep it.
In general, though, there isn’t a hard and fast rule for preventing

these things from happening. Video games are big, complicated pieces
of art and technology all mixed together, and part of the fun and
excitement of making games is seeing things you didn’t predict. The
best thing you can do is always be thinking about what you make,
always try to be critical of what you do and be prepared to fix
mistakes when they happen. Everyone working in procedural genera-
tion is learning something new every day, and no one should feel bad
for not seeing something coming. Each surprise is another learning
experience.

THE BIG WIDE WORLD
A lot of the time our generators don’t need to know much about the
real world in order to do their job. Spelunky’s level generator doesn’t

52 ■ Procedural Storytelling in Game Design

need to know anything about how caves are formed, who Indiana Jones
is or where a dog is most likely to hide if it gets stuck underground. All
it needs is a big pile of level chunks and the rules for how to stick them
together to make levels. For more on Spelunky cave generation, you can
see Chapter 2.
Sometimes we want our generators to contain a little bit more

information and knowledge. Maybe we want our recipe generator to
name itself after random places from the real world, or maybe we want
to look up the symbolic meanings of colours for our flag generator.
Whether it’s knowledge we don’t have ourselves or it’s simply faster and
more flexible to do it automatically, procedural generators can easily be
fed information from the Internet or other sources to make them
cleverer and more powerful.
One way of doing this is to use static databases of knowledge, like

Wikipedia, for information. Argument Champion, a 2012 game about
debating, used an online resource called ConceptNet to generate con-
tent for its game. ConceptNet is a database of facts and relationships
designed for use by software, especially AI programs. Some of its
knowledge is input by hand, while other knowledge is automatically
scraped from other sites and formatted for ease of use.
The results can seem fairly impressive, especially at first. Type in cat

and ConceptNet can tell you that cats are capable of hunting mice, that
they have four legs and whiskers, that they like playing and drinking
milk. These are represented as a pair of concepts linked by
a relationship, so for example “cats” and “whiskers” are connected by
the “has” relationship. Argument Champion uses these to connect
topics, allowing a debate to shift focus from schools to computers,
from computers to keyboards, and from keyboards to pianos.
You might have noticed in that last connection that the sense of

“keyboard” changed from something you type on, to something you play
music with. ConceptNet isn’t perfect and often confuses concepts (a
janitor is a custodian; The Janitors are a noise rock band). If your game
made these connections, the player might find them a little confusing,
but might actually find them entertaining. Unfortunately, that isn’t all
ConceptNet thinks. If you type “woman”, one of the “facts” you retrieve
is “women are sluts”. Argument Champion might not come up with that
connection, but the next game to use ConceptNet could well make that

Ethical Procedural Generation ■ 53

mistake, and most players probably won’t find that quite as entertaining,
to say the least.
In fact, they might even find it as offensive as if you’d said it

yourself. As humans, we tend to respond to software being intelligent
by expecting it to behave in increasingly intelligent ways. When we
see a game making clever connections between computers and key-
boards, or cats and milk, we often assume that the software under-
stands the meaning of what it’s doing, when in practice it likely does
not. That means that when it does something wrong, we don’t just
see it as an accident—we treat it as if it was a genuine statement, and
that the software knew what it was doing. This is a great reason, as
developers and designers, we need to think very carefully about the
systems we build.
One approach that can solve some of these problems is using

a banlist for language. Darius Kazemi (author of Chapter 2), a well-
known Twitterbot creator who has done a lot of work with generative
software, maintains various banlists designed to catch words that might
lead to offence. These lists are often designed to be cautious, under the
thought that it’s better to accidentally filter out too much than to not
filter out enough. One bad incident is generally all you need to ruin
someone’s day.
Banlists are great if you’re working with language because they work

by filtering the output of your generator, which means they can catch
mistakes in generators that you might not ever have predicted. The
original Elite, released in 1984, had a name generator for star systems
that would stick together small collections of letters to make long words.
The developers spent some time tweaking this system to make sure it
never generated anything rude—a ban list can help by checking the
output of even the most random words and strings of letters. But they
don’t solve everything, and data from the outside world can be a real
source of danger when building experimental procedural generators. To
give you an idea of why, we’re going to look at another game which,
like Argument Champion, used online data. This game was called
A Rogue Dream (Figure 5.1), which I made in 2013 for the 7-Day
Roguelike jam.
The principle behind the game was quite simple—the player types

a noun into the game at the beginning, and the game procedurally

54 ■ Procedural Storytelling in Game Design

generates a theme for itself so that the main character of the game is the
noun the player input. So for instance, if the player types in “cat” then
they control a little cat sprite, avoiding droplets of water, eating grass,
searching for cardboard boxes, using powers called “Scratch” and “Sleep”.
The way the game did this was by using a technique called “Google

milking”, coined by researcher Tony Veale. Google milking works by
reverse engineering the language of question-asking to get information
about the world. When someone asks Google “Why do doctors wear white
coats?” a likely reason for them asking the question is that they believe it to
be true. They’re looking for a reason, but the fact that doctors wear white
coats is considered something true—we can extract the factual part out of
the question and use it as knowledge about doctors.
The more people ask a question, the more people presumably believe

the facts of the question to be true—but how do we know which

FIGURE 5.1 A screenshot of A Rogue Dream where the player is controlling
a cat.

Ethical Procedural Generation ■ 55

questions are popular? Google autocomplete can tell us, because it’s
trained to give us the most popular search queries. So if we type “why
do doctors” into Google, the search queries it suggests are the most
common things people ask about doctors. Why do doctors wear white
coats? Why do doctors say stat? Why do doctors prescribe steroids? Our
game might not know the answer to these questions, but it can use
these things to understand more about what a doctor is.
So if you type “Why do cats hate … ” into Google you get “water” as

an auto-completion, if you type “Why do cats eat … ” you get “grass”
and so forth. Each of these specialised queries is used by the game to
generate its enemies, pickups, goals and ability names. A Rogue Dream
is entertaining to play, because unlike many knowledge databases like
ConceptNet, Google is packed with popular culture, everyday observa-
tions and slang. If you choose to be a ninja you’ll be fighting pirates.
If you choose to be a musician, you’ll be fighting music sensation
Kenny G. If you choose to be a nihilist, your health packs are floating
clouds of darkness.
But you might be sensing a problem here, and indeed A Rogue Dream

did not get very far in development before unfortunate things started
happening. While a lot of the most generic, innocent queries produced
fun game themes, others carried more weight. If you typed in “priest” as
the player character, one of your abilities would be “abuse child”. If you
typed in “man” your enemies were women. If you typed in “Muslim”
your abilities included “kill”. People don’t just type into Google things
that they’ve directly observed—they type in stereotypes, rumours,
misconceptions, hate speech, conspiracy theories and worse. A Rogue
Dream, unable to tell the difference between people who see cats eating
grass and people who think French people are lazy, ends up collecting
all of this information and using it as fact.
It’s difficult to throw away work, and it’s hard to admit an idea is bad.

I almost developed A Rogue Dream into a museum exhibit for children
to interact with and learn about procedural generation. But after weeks
of trying to filter the system, improve its understanding, limit its search
capabilities or change its purpose, I abandoned the project. Now it’s
mostly used as an example of how procedural generators with the best
of intentions can end up being harmful—which, as it turns out, is quite
useful. I hope it’s also a great reminder of why it’s important to think

56 ■ Procedural Storytelling in Game Design

about the ramifications of the systems we build from an ethical
standpoint.

YOU ARE WHAT YOU EAT
As an addendum to the previous section, we should talk about another
way that generators can find bad things out there in the world.
Previously, we focused on real-world data that we might find and want
to use in our game—live data like Google results, knowledge bases like
ConceptNet—and the things we might want to be wary of when doing
this. Just as dangerous is opening our generator up to real people and
giving them some control over the content it creates.
Outside of games, Microsoft learned this lesson the hard way in 2016

when it released Tay, a Twitterbot that interacted with users and
learned words and phrases from them. Tay had a lot in common with
a procedural generator in a game: it created things for other people to
look at and enjoy, from a catalogue of data it could intelligently chop up
and rearrange. But Microsoft wanted Tay to interact more closely with
its users and to appear as intelligent as possible, so it allowed Tay to
learn things from people who spoke to it. This had the unexpected (or
perhaps completely expected, depending on your perspective) effect of
turning Tay into a mimic for anything anyone told it, from hate speech
to pure nonsense. Tay was shut down within hours of launching and led
to a lot of reflection from engineers and artists about how to create
systems that learn from other people.
Tay might seem like it doesn’t have too much to teach us, but

a number of trends in game design and development are leading in the
direction of more human involvement in the games that we play.
Games like Stellaris have built-in mod tools that allow players to edit,
upload and share data lists for in-game procedural generation, which
means that the game’s procedural generator is partly designed by
someone who may not be thinking about the game and content genera-
tion in the same way that the game’s designer was. Of course, in the
case of modding the player is able to choose what to install and what
to ignore. But other trends—like taking game input from the chat
messages on streaming services such as Twitch—opens up the game to
unpredictable, hard-to-filter input from a large quantity of people. If

Ethical Procedural Generation ■ 57

anything, these inputs are likely to be even more problematic for
a generative system than Tay’s Twitter followers were.
Getting input from people can produce much more interesting and

varied content: they can add a dose of human creativity into a rigid
system, and they can help make a generator feel personalised and
unique for a particular player. But we are always running the risk of
encountering the worst side of human creativity with this, and that
can be something that is hard to recover from. Just because opening up
our generators is potentially dangerous doesn’t mean we shouldn’t try to
experiment and see what new systems and games we can build, though.
But we need to be aware that these problems are out there and do what
we can to design our systems to limit these bad outcomes.
One way we can experiment in this area while limiting the bad

outcomes is to restrict the ways we take input into our generator. If
our generator can be given strings of words, then instead of letting our
users have totally free input, we can limit them to the use of a set of
a few hundred words to express themselves. If our generator uses
artwork, we can let our users snap shapes together instead of allowing
them completely freeform drawing. People will always try to circumvent
whatever systems you give them, but a few restrictions here or there will
make life easier and your generator safer.
Before we close out this section, let’s dwell a moment longer on Tay,

because in many ways the story of Tay is a good explanation of why this
chapter matters and why it might have an impact on your game. One of the
reasons the response to Tay was so negative and so critical was that once
a piece of software is given bad patterns of behaviour, the people who see
and repeat those patterns don’t think about who taught them those beha-
viours. They only focus on what the software is doing. If our generator starts
producing offensive or other kinds of bad content, people won’t blame
Twitch chat—they’ll blame our generator. It’s a totally reasonable response
and something that should motivate us to do our best to be responsible in
what we build, who we let it talk to, and where we let it do its work.

TALKING THE TALK
Most of this chapter was dedicated to all the things that can go wrong
with our software. It can be taught bad things, it can find out bad things

58 ■ Procedural Storytelling in Game Design

all on its own, it can spread ideas (both good and bad) far and wide. Of
course as the designers of that software we are responsible for what it
does. But sometimes we’re more directly responsible for the issues
surrounding our procedural generators, so before we move on from
this chapter back into technical and aesthetic concerns, let’s take
a minute to think about how we talk about procedural generation with
the wider world.
Promoting games—or anything else for that matter—is really hard.

Even if money isn’t involved, simply getting people to look at some-
thing you made is really difficult. Various advice is offered to devel-
opers about how to promote games in particular: advice about whom
you should talk to, what you should talk about and how you should
phrase it. Even if you’ve never read a thing about promotion, you’ll
probably have noticed common patterns in the way other people talk
about their games or describe them in stores. It’s important to
summarise things, to focus on the most important points, to get
across the essence of what it is that you’ve made and to emphasise
what makes your game special. What sets it apart? What makes it
unique and worth talking about?
Procedural generation is still a selling point for video games. Steam

has a tag dedicated to it, and many curators recommend games solely
for the presence of procedural generation, but games with generators
have been popular for a very long time. “The heart of Diablo is the
randomly created dungeon” states the very first page of the original
Diablo design document, “providing a new gaming experience every
time Diablo is played”. Even though it can feel like so many games have
procedural generation these days, people are still interested by it. So it’s
natural for it to come up when talking about games.
It’s also very easy to get carried away when describing something

amazing that you’ve created and are proud of. So when we talk to
people about procedural generators, often we say things that express
how excited we are, without thinking about what they really mean. Let’s
go back to that statement from the Diablo design document for
a second: “A new gaming experience every time Diablo is played”.
What does that actually mean? Does it mean the game mechanics
change? If you’ve played Diablo you’ll know that’s definitely not the
case—you’re clicking on zombies and casting spells no matter what

Ethical Procedural Generation ■ 59

happens. Does it mean the levels change? Well, sort of. They look
different and have different layouts. You couldn’t memorise a level and
run it twice, certainly. But you’re always going to the same places—the
same caves, the same villages. They are shaped differently but painted
the same.
That might sound unfairly harsh on Diablo, because we know what

they really mean by “a new gaming experience”. It’s a euphemism, like
a lot of language about procedural generation is: “limitless gameplay”,
“infinite replayability”, “endless variety”. These are all phrases we see
used to describe algorithms that are usually doing the computer equiva-
lent of shuffling a deck of cards and dealing you a new hand. Over time
we’ve grown so used to these turns of phrase that we probably don’t
think much about the language any more—we instinctively know what
the person speaking them means, so we don’t think about how they
sound to people who are less familiar with these ideas.
Relying on people to “know what we mean” when we talk about our

work isn’t a very good idea. People might learn over time, but all we’re
really doing is passing the problem on to a new community of people
who will make the same mistakes. More importantly, as this book
shows, new ideas are coming out of the procedural generation world
every day. When we try to explain or sell these ideas to people, there
will be hardly anyone who knows what you mean. You’ll be deciding
how people understand your work, and what expectations people have
when they buy your game.
A good example of this is the idea of “uniqueness” in procedural

generation. A lot of games try to count how many different dungeons or
items their game has and use this to illustrate how big their procedural
generator is. The 2009 shooter Borderlands proudly stated the game’s
17.5 million guns as a key part of its marketing campaign—it even
managed to find its way into the Guinness Book of World Records with
this award. But if we made a copy of a gun in the game and added one
point to its damage, most people wouldn’t consider the two very
different except in the most legal, technical sense. Even if we kept
adding damage points until it felt different, we’d probably end up in
a situation a little bit like Diablo’s dungeons—they’re distinct from
one another, but not unique. For more on perceptual uniqueness, see
Chapter 1.

60 ■ Procedural Storytelling in Game Design

So what’s wrong here, ethically? We’re not specifically lying; we’re
just being a little misleading or unclear with how we’re talking about
the game. It probably comes from a good place, from a feeling of
excitement and positivity the developers have about their game.
When we put a big number in front of someone, though, we’re
leaving it up to them to guess at what percentage of that number
will be interesting, useful, fun or relevant. If they’re familiar with
procedural generation in games and its limitations, they probably
won’t mind! But if they’re less experienced, or perhaps you’re
offering something new, then there’s more of an opportunity for
misunderstanding.
That doesn’t mean we can’t be passionate and excited about our

work, of course! It just means that we should think carefully about what
we say and write about what we make. Sometimes it can be as simple as
changing the kind of language you use. In Spelunky, the game tells you
“the walls are shifting” as a new level is generated. It’s a small and
elegant phrase, but it tells you everything you need to know: the levels
are being shuffled around, they aren’t entirely new, but they’re different
to what you just saw. It doesn’t promise too much, and it slots neatly
into the game’s theme.
Another approach is to think more carefully about what makes your

procedural generator fun. In many ways, advertising millions of
guns or billions of levels doesn’t really make much sense—the
average player will probably only see a few thousand. So what is it
that makes our generator cool? What does it do that makes us smile
or makes us want to see more of what it produces? Maybe it actually
produces a lot of rubbish, and maybe that rubbish is what makes the
rare discoveries of something good so wonderful and exciting.
Instead of avoiding these ideas, we can play into them and build
our game to be more strongly based around these ideas of rarity and
surprise.
People will have their own ideas of how to talk about their procedural

generation, what kind of language they feel comfortable using and
what story they want to tell people about their game. Don’t feel like
you need to take everything we’ve discussed here at face value, but do
bear some of these ideas in mind the next time you tell someone about
a procedural generator.

Ethical Procedural Generation ■ 61

THE FUTURE
One of the great things about working in procedural generation is how
fresh and unexplored most of the field is. Although games have had
procedural generation for many decades now, we’ve spent a lot of that
time doing the same things over and over. We’re getting really good at
them now, but there are a lot of things that people have never even
thought of, let alone actually attempted. This book will give you a lot of
inspiring ideas to consider and experiments to try, and possibly inspire
some things that we’ve never seen before!
With that excitement of pioneering comes the responsibility of being

the first people in a strange new land. It means we should tread a little
more carefully in case something unexpected happens, that we should
be prepared to think in new ways and break old traditions if the
situation demands it. It also means that the things that we do now, the
problems we decide to solve, the issues we consider important—these
become examples that are set for the people who come later. All of the
ethical topics in this chapter do matter, even if they seem trivial right
now, because by valuing these issues we make them valuable for the
generations of procedural generation enthusiasts who will follow us.
Each reader will have a different response to this chapter, agreeing

with some things, ignoring others. All that really matters is that you’ve
thought about these things long enough to decide what they mean to
you, and what you want to do in response. I hope you’ll bear some of
them in mind as you enjoy the inspiring chapters in the rest of this
book and as you build generators of your own in the future.

62 ■ Procedural Storytelling in Game Design

2
Structure and Systems

S torytelling itself is already a complex structure, building upon the
rules of vocabulary and spelling into grammar and coherent sen-

tences, finally establishing meaning and insight through patterns of
imagined behaviors, events, and consequences. How, then, does one
teach all of these intersecting rules to a machine collaborator? How can
this complexity be improved upon rather than diminished by the
addition of programmed logic? What are our goals in doing so?
This section offers a selection of approaches to the problem from

different angles. Starting with a retrospective on what may be the first
significant procedural narrative in games, we will move into a series of
explorations in different ways systems can define emotional outcomes of
narrative.
We can know neither what kinds of procedural narrative you are

trying to structure nor what your goals for your systems may be, but we
can offer this encouragement: There are almost as many structures and
philosophies as there are designers working in the field. There is no
single method that dominates procedural narrative design. Therefore,
take what processes and taxonomies you may find useful here, as
a series of lenses, applicable to either creation or analysis as the need
strikes.

63

This page intentionally left blank

CHAP T ER 6

Retrospective
Murder on the Zinderneuf (1983)

Jimmy Maher
The Digital Antiquarian Blog

Mystery stories have been a staple of adventure gaming since
1978’s Mystery Mansion. That’s little surprise; no other form of

traditional static literature so obviously sees itself as a form of game
between reader and writer and thus is so obviously amenable to
adaptation into other ludic forms. Said adaptations existed well
before the computer age, in such forms as the Baffle Books of the
1920s, the Dennis Wheatley Crime Dossiers of the 1930s, and the
perennial board game Cluedo (Clue in North America) of 1949.
The earliest computerized mystery games had the superficial trap-

pings of classic mystery literature but little of the substance. Games like
Mystery Mansion (1978) and Mystery House (1980) were essentially
standard Adventure-style treasure hunts, full of mazes and static puzzles
that happened to play out on the stage set of a mystery story. But
Infocom’s 1982 text adventure Deadline was a far more earnest attempt
to capture the spirit and substance of classic mystery stories in addition
to the window dressing. With such a proof of concept to examine (and
one that proved to be a major hit at that), combined with a recent
uptick in interest in the mystery genre within ludic culture in general
following the republication of the old Dennis Wheatley dossiers and an
elaborate new board game called Sherlock Holmes: Consulting Detective,
other developers started diving into mysteries with similar earnestness.
Some of them worked in the text-adventure form, but others branched
out into other paradigms. For instance, Spinnaker’s two child-oriented

65

Snooper Troops games and CBS Software’s two adult-oriented Mystery
Master games replaced parsers and a single complex story with a more
casual form of crime solving. Each contains a series of shorter cases to
be solved by traveling around a graphical city map, ferreting out clues at
each location using a menu-driven interface. A top rating is achieved by
solving the crime quickly, using a minimum of clues. Then there was
the game that would become known mostly as that other Free Fall game
after the huge success of Archon: Murder on the Zinderneuf (Figure 6.1).
It’s that most interesting anomaly that pops up more than you might
expect: an adventure game designed by someone who didn’t much like
adventure games.
Jon Freeman laid out his objections to traditional adventure games in

an article in the December 1980 issue of Byte, contrasting the form and
its limitations with those of the CRPG form he was then using in
crafting Automated Simulations’ DunjonQuest games. An adventure
game, he says, is so static that it’s hardly a game at all. It’s “really
a puzzle that, once solved, is without further interest.” The former part
of this claim became increasingly less true as more dynamic, responsive
game worlds like that of Deadline were developed, but the latter

FIGURE 6.1

66 ■ Procedural Storytelling in Game Design

part … well, it’s hard to deny that point. The real question is to what
extent this bothers you. One remedy is longer, deeper works that take as
long to play once as it might take you to exhaust the interest of another
type of game over many, many plays. Another, of course, is to simply
say “so what,” to note that no one ever criticizes other forms of art,
like books, for not being infinitely re-readable (not that Shakespeare
doesn’t come close). But still, a re-playable adventure (or for that matter
re-readable book) would, all else being held equal, be superior to a non-
re-playable version of the same game. After all, people playing these
games in the early 1980s were (presumably, if they were honest sorts)
buying them, and for prices that can seem insane today when measured
against the complexity and amount of actual content found in the
average product; the average $0.99 app-store download today has far
more of both than most boxed $30 or $40 AAA-level productions of the
early 1980s. All of these considerations led to the dynamic, re-playable
Murder on the Zinderneuf, which generates a brand new mystery every
time you play it. Freeman, who still lists Cluedo amongst his favorite
games of all time, recycled that game’s concept on the computer but
fleshed out the suspects, the setting, and the randomly generated stories
behind the murders themselves to make something more in line with
the expectations of adventure gamers.
The mystery may change, but the setting and the actors, the raw

materials of these little computer-generated dramas, must inevitably
remain the same. Luckily, they’re pretty inspired. The game takes place
in 1936, the heyday of the rigid airship, surely one of the most romantic
and just plain cool methods of travel ever invented. On a trans-Atlantic
voyage aboard the fictional German airship Zinderneuf, a murder has
been committed. Which of the sixteen passengers was killed, and which
did the killing and why … these elements are generated anew each time.
As a whole genre of pulp-action tabletop RPGs have taught us, the
1930s are a wonderful period for fans of intrigue and derring-do, and
Zinderneuf uses that well. Freeman and Reiche work in a lot of the era’s
touchstones: old Hollywood, action serials, the Berlin Olympics, the
Spanish Civil War, the mob, Amelia Earhart, spiritualism, adventurous
archaeologists (Raiders of the Lost Ark was still huge while they worked
on the game), and of course Communists and Nazis. It’s an effervescent,
pulpy version of history. (That said, our libertarian friend Freeman just

Retrospective ■ 67

can’t restrain himself from taking a political shot at Franklin Delano
Roosevelt that strikes a weird sourpuss note amongst all the fun:
“Roosevelt was still offering his own version of “bread and circuses” as
he “guided” the United States through an unprecedented four terms of
depression and war.”) The Zinderneuf itself, meanwhile, proves perfect
for a Murder on the Orient Express-style whodunit. Playing as one of
eight detectives drawn from literature or television—including homages
to Mike Hammer, Miss Marple, Columbo, and the inevitable Sherlock
Holmes among others (Figure 6.2)—you have twelve hours to solve the
case before the Zinderneuf touches down in New York, and the suspects
all scatter to the winds.
Those twelve hours translate to just 36 minutes of game time—yes,

this is a real-time game. The idea here was to replace a 40-hour
adventure game with a half-hour game that “can be replayed 100
times.” Also replaced are the text and parser, with a top-down graphical
display and an entirely joystick-driven interface (Figure 6.3).
Each game begins by telling you who has been murdered from

among the cast of characters, each of whom receives a capsule bio in
the manual. And then, as Holmes would say (and the manual happily
quotes), the game is afoot. You collect evidence in two ways. First, you

FIGURE 6.2

68 ■ Procedural Storytelling in Game Design

can search the cabins of the victim and any of the other passengers to
see what connections you can discover.
In the case of Figure 6.4, I now know that the murderer of Oswald

Stonemann is most likely someone with black hair; the victim is always
assumed to have been killed in their cabin. This immediately narrows
the suspect list down to five. A logical next step may be to search the
cabins of those five suspects, to see what further connections I can turn
up. Eventually, however, I will want to start questioning suspects. I can
choose the approach I take to each (Figure 6.5). Various approaches are
more or less favorable to different combinations of detective and
suspect, something that must be deduced with play. If I choose wisely,
perhaps I get a clue (Figure 6.6).
When I believe I have determined opportunity and motive (the game

is oddly uninterested in the actual means of murder), I can accuse
someone. A false accusation, or one based on insufficient evidence,
doesn’t end the game but does greatly affect your “detective rating” at
the end, and prevents you from using that suspect as a source of
information for the rest of the game. If you haven’t accused anyone by
the time twelve hours (i.e., 36 minutes) have passed, you get one last
chance to make an accusation, at some cost to your detective rating,
before the game reveals the murderer for you.

FIGURE 6.3

Retrospective ■ 69

There’s much that’s very impressive here. The randomly generated
cases go far beyond the likes of Colonel Mustard in the drawing
room with the pistol. Most of the cases don’t even involve that most
reliable standby of the mystery writer, love triangles. One time,
I discovered that Phillip Wollcraft, the archaeologist, had killed the

FIGURE 6.5

FIGURE 6.4

70 ■ Procedural Storytelling in Game Design

young Natalia Berenski because he was in thrall to certain nameless
be-tentacled somethings and needed a handy virgin to sacrifice. (Yes,
even the H.P. Lovecraft mythos makes an appearance in this giddy
pastiche of a setting, marking what may just be its first appearance in
a computer game.) Another time, I discovered that the beautiful pilot
and all-around adventuress Stephie Hart-Winston had killed the
Reverend Jeremiah Folmuth after learning that he had killed her
beloved brother in a hit-and-run car accident years before. Other
cases involve espionage (a natural given the time period), blackmail,
even vampires. Most manage to tie the crime back to the period and
setting and the specific persona of the characters involved with
impressive grace. But for all that, and despite its superficially easy
joystick-driven interface and bright and friendly on-screen graphics
that actually look much nicer (at least on the Atari) than those of
Archon, Zinderneuf doesn’t quite work for me. Part of the problem
derives from all of that rich background information existing only in
the manual and not on the screen. The first half-dozen times you play
you’re frantically flipping through the pages trying to figure out just
who is who as the clock steadily ticks down, an awkward experience
a million miles away from Trip Hawkins’s ethos for a new, more
casual sort of consumer software. By the time you get over that

FIGURE 6.6

Retrospective ■ 71

hump, some of the seams in the narrative generator are already
starting to show. You learn what combinations of clues generally
lead where and start to see the same motives repeat themselves. For
all the game’s narrative flexibility, there are just eight master stories
into which all of the other elements must be slotted. The shock of
Wollcraft’s doing the deed diminishes considerably after you see the
same story repeat itself again, with only the name of his victim
changed. All of these limitations are of course easily understandable
in light of the 48 K of memory the game has at its disposal. Still,
things started feeling very shopworn for me long before Freeman’s
ideal of a hundred plays.
I also found other elements of the design problematic. When you get

down to it, there just isn’t that much to really do, and what there is
often ends up being more frustrating than it needs to be. Searching
a cabin requires wandering about it trying to cover every square inch
until the game beeps to inform you that you discovered a clue—or did
not. Talking to suspects can be just as off-putting. Most will only answer
a question or two before wandering off again; you then aren’t allowed to
speak to them again without speaking to someone else first. Thus, the
game quickly devolves into a lot of sifting through denials and non-
committals, struggling to figure out the right approach to use, while only
being able to field one or two questions to your star witness (or suspect)
at a time. The memory limitations so strangle the dialog that it’s
impossible to pick up clues, as you might in a real conversation, about
whether or why your current interrogation approach is failing or which
one might better suit. Murder on the Zinderneuf is fascinating and
groundbreaking as a concept, but ultimately a game should be fun in
addition to any other virtues it might possess, and here I’m just not sure
how well it succeeds. Reading the manual with its cast of exaggerated
characters was for me almost more entertaining than actually playing.
Zinderneuf’s ideal of a narrative that is new every time is neat, and

certainly interesting for someone like me to write about as the road
almost entirely not taken in adventure games. But are there perhaps
good reasons for it to be the road not taken? Maybe for someone
primarily interested in games as experiential fictions, a 40-hour story,
crafted by a person, is more satisfying than 100 30-minute stories
generated by the computer.

72 ■ Procedural Storytelling in Game Design

At the risk of making Freeman a straw man for my argument, it’s
tempting to think again about the flaws that he believed he saw in existing
adventures. I believe that designers who see games as rules systems to be
carefully crafted and tweaked are often put off by adventure games, which
are ultimately all about the fictional context, the lived experience of playing
the protagonist in a story. Perhaps having the system itself generate the
story could be seen, consciously or unconsciously, as a way to fix this
perceived imbalance, to return the art of game design (as opposed to
fiction-authoring) to the center of the equation.
Yes, Murder on the Zinderneuf’s narrative generator is clever, but it’s

not as clever as, say, Marc Blank, the author of Deadline—and arguably
not clever enough to sustain a genre whose appeal is so deeply rooted in
its fiction. Zinderneuf is more interesting as a system than as a playable
story, in a genre whose appeal is so rooted in story. That, anyway, is
how this story lover sees it. This isn’t to discount Zinderneuf’s verve in
trying something so new. We need our flawed experiments just as much
as we do our masterpieces, for they push boundaries and give grist for
future designers’ mills.
Adapted from www.filfre.net/2013/02/free-fall-part-2-murder-on-

the-zinderneuf

Retrospective ■ 73

www.filfre.net/
www.filfre.net/

This page intentionally left blank

CHAP T ER 7

Designing for Narrative
Momentum

Jon Ingold
Inkle

When in doubt, have a man come through the door with a gun in
his hand.

Raymond Chandler

T his quote from Chandler seems like a pretty redundant way to
start an article about game design. As an industry, we’ve inter-

nalised this rule all too well: nameless henchman have been springing
from nowhere at our players for decades now. And yet games aren’t
immune to the problem that Chandler was tackling. The dreaded
narrative slump: that sudden, deflating moment when the story’s
momentum evaporates. There is a pause in the action, and suddenly
nothing much seems to be going on at all. Nathan Drake stares into
space. Lara Croft adjusts her bow. The game waits, like an actor who
has forgotten the next line, hoping the player will provide the cue-line
that gets things rolling again.
Moments like this don’t happen in modern movies: the edit suite

ruthlessly enforces pace. As audiences, we have learned impatience.
A great film, a great play, or a great game—whether it’s football or
God of War—is supposed to be gripping. Entertainment should snatch
us in a giant’s fist and hold us fast, not letting go until we have been
carried all the way to the conclusion. We want to be swept away,
whether by inescapable ratcheting tension, simmering powerful

75

emotion, or gun-toting surprise. We wish to ride a river of narrative
momentum—to be assured both that things are happening and that we
won’t believe what’s going to happen next.
This momentum is precious, hard-won, and easily fumbled. And in

games, the problem of conserving narrative momentum is made harder
by factors Chandler did not have to consider. Games are built, not on
surprise and escalation, but on loops and repetition. Players drive
the experience, but players never really know what they’re supposed to
be doing. And while all stories talk about risk and reward, only games
have to handle the outcomes of both success and failure at every turn.
Philip Marlowe is never fatally wounded by a middle-act incidental
gunman. He never fails to spot the laundry chit hidden under the
biscuit tin in the cabin.
Worse still, Marlowe is never allowed to give up and do nothing. In

games, we give our players the freedom to act, but that means also
giving them freedom to do entirely unproductive things, to fail, to waste
time in fruitless dead-ends, and to get horribly confused in the process.
So what hope do we have of keeping momentum alive?

ONLY FORWARDS DESIGN
In an action game, momentum is a key goal of the experience, and
action games have traditionally solved the pace problem by taking their
cues directly from cinema and making experiences that only go for-
wards. They design worlds that appear open—that may even have
branches and alternative routes—but nevertheless are in fact corridors
filled with exciting-yet-functional one-directional valves (mudslides,
lifts, sudden drops from helicopters) to ensure that players are always
in drive and never in reverse.
Some will cleverly reuse levels: flooding a room you previously ran

through or making you fight your way out of somewhere you only just
broke into. (If you walk through a location in a Naughty Dog game
containing waist-high walls, you know you’re in for some trouble down
the line.) But whether the player’s path is straight or looping, the action
is all still laid out in advance, beat to beat, and the game’s designers
work tirelessly to ensure that at the end of each set-piece the next one is
clearly signposted and preferably has already begun.

76 ■ Procedural Storytelling in Game Design

At the other end of the gameplay spectrum, the highly narrative
choose-your-own-adventure books used a similarly unidirectional
approach; stories structured as acyclic directed graphs, flows that
branch and rejoin but are always moving forwards (Figure 7.1.) This
ensured that players could not lose their way: they were always on track
towards an ending, though more often than not that meant
a throwaway death at the hands of a murderous yeti.
The more complex Fighting Fantasy books (Ian Livingstone, Steve

Jackson) used their branches to create puzzles (or more accurately, to
create mazes). Key information and items were hidden in obscure side
paths but then required in order to proceed.

CYOA #1: The Cave of Time 1

2

4 5

6

7

8

9

10 16

1718

19

20

93

21

2628

29 30

31347680

2751 77 68 79 58 64

6559868869

63 1026289

32

3335

9190

25

5060

81

113

45 44

43

4241

97

96100

9599

98 101 94

5655

54 9253

57

112

108 110

109

84 82 87

23

37

11

1213

14 15 78 66

67

7470

71

103 72

75

73

36

39

38 2240

83

114

24

115

107

111 105

104106

61

85

48

49

474652

3

FIGURE 7.1 Courtesy of S.P. Osborne, outspaced.fightingfantasy.net.

Designing for Narrative Momentum ■ 77

(To minimise cheating, these hidden secrets were often coded as
rules, such as “add 7 to the current paragraph number to use the
gold key on a paragraph beginning with the word ‘Red’”. This led to
a curious effect, whereby players solving Fighting Fantasy books often
wound up reading them entirely out of order, so as to find the clues
that would allow them to reverse-engineer what the correct order
actually was.)

OPENING THE FLOW
Creating a narrative-driven digital work that doesn’t rely on high-octane
action-movie antics, we can replicate the CYOA structure, but the result
can be unsatisfying. The “only forwards” assumption that was never
questioned by readers of Fighting Fantasy books seems artificially restric-
tive in a digital context. When faced with a choice of paths, left and right,
players expect to be able to explore one, backtrack, and then explore the
other. When faced with a character, players expect to be able to ask every
question, not one or the other. But as soon as we allow the freedom to
revisit and backtrack—as text adventures, graphic adventures, and open-
world games all do—or to farm through dialogue options, then our story
world suffers a critical blow. It loses an entire axis, becoming frozen in
time, filled with locations that remain, static and unevolving, from visit to
visit. Our characters become vending machines. The game turns from
a living world into a waxwork museum.
This problem scales badly. The more players explore, the more they

accumulate larger and larger numbers of empty, repetitive locations:
shopfronts without shops, libraries without books, smithies whose
inhabitants stand patiently by their anvils day and night, bartenders
who polish the same mug time and again, hoping against hope that the
player will grant them the chance to deliver their line of dialogue.
(“Want some rye? Course you do!”) Piratical types wait endlessly in
identical bars to play a board-game, either very well or very badly
indeed. Villagers wring their hands about the werewolf in the woods
but won’t lift a finger to do anything about it themselves.
If narrative momentum can be calculated, its value is importance

(mass) multiplied by rate of change (velocity); if the world is built like
a mirror, unaffected by anything except the player’s actions—opening

78 ■ Procedural Storytelling in Game Design

doors, unlocking boxes, or inquisition of the bartender—then our
mirror-world has no more momentum than the player puts in. How,
then, can we sweep players off their feet?
Obviously, no game can deliver the infinite and subtle variety—and

boredom!—of a living, breathing world, nor should it—the world
might as well revolve around the player, springing to life like the
inhabitants of Seahaven in The Truman Show only when the player
moves into view. The player is the only person in the game, after all.
A rich simulation, or, say, a vastly procedurally generated universe,
might be fun to code but doesn’t make for a very satisfying game
experience unless the player is given something interesting to do.
So: how do we ensure our story is always moving forwards even

when the player has a range of things to do at any given moment? And
how do we prevent a non-linear environment from creating something
tedious when experienced linearly by a temporally bound human player?

THE DESIGN OF INK
At Inkle, we’ve had the advantage of working largely with text content,
which is cheap to produce at scale. This has allowed us to cheat: to
embrace both freedom and consequence simultaneously. In 80 Days, the
player will typically see about 3% of the 750,000 words of game-script in
a single playthrough; the 3% is selected entirely based on the player’s
choices. The design could be summarised as “only forwards, whichever
way you want”.
The game’s central conceit—that the player is attempting to drag

Phileas Fogg around the world within a tight time limit—provides a solid
narrative reason to prevent backtracking, and ensures that “failing”
a scenario—or simply opting out of a risky side adventure—is still an
active, busy choice that pushes the player onwards to the next destination
and the next opportunity to be tempted off course.

THE WEAVE STRUCTURE
The optimisation of momentum in 80 Days was no accident. Underneath
the game is the ink engine that powers the text: a mark-up based
programming language, ink was specifically designed to build the assump-
tion of “only forwards” storytelling into the fabric of the language.

Designing for Narrative Momentum ■ 79

The core ink structure is a “weave”: a block of text and options with the
assumption of “always dropping downwards” built into its flow. Here, for
instance, is a somewhat abridged version of 80 Days’ opening story chunk.

=== london ===
- Monsieur Phileas Fogg returned home /early/ from the
Reform Club, and in a new-fangled steam-carriage,
besides!

* I helped him down[], and the iron-lunged, steam-
driven horses clattered away.
- “Passepartout,” said he. “We are going around the
world!”

* (zany) “Around the world, Monsieur?”[] I asked,
utterly astonished.

* (dull) “Very good, Monsieur[.”],” I murmured duti-
fully, not believing a word of it.
- “We shall circumnavigate the globe within eighty days.”
He was quite calm as he proposed this wild scheme. “We
leave for Paris on the 8:25. In an hour.”

* {zany} “But I have not prepared!”[] I said wretch-
edly, quickly trying to organise a list of necessary items
in my mind.

“Then do it now.
* {zany} “You are in jest!”[] I told him in dignified

affront. “You make mock of me, Monsieur.”
“I am quite serious.

* {dull} “But of course[.”],” I answered, still extre-
mely suspicious.

He nodded. “Good.
* This was {dull:quite a departure|a shocking turn-

about}[!] for my master, who was, by all accounts,
a creature of inflexible habit and mechanical regularity!
Perhaps the carriage’s engine-fumes had affected his
reason?

* * “Perhaps you should lie down, Monsieur.”
“That would be a most inefficient use of time,” he

replied implacably.“
* * “For Paris, Monsieur?”

“To begin with, yes.
- <> Pack my cloak and my evening jacket. There is not
a moment to waste!”

-> DONE

80 ■ Procedural Storytelling in Game Design

(The real game includes additional mark-up, altering various char-
acter statistics based on the choices made here.)
Reading weave takes a little practice. The script begins at the top

line, before branching across the options, marked with asterisks.
Each option contains both the text of the choice (before the []
brackets), and the whole paragraph to be shown if the choice is
chosen. After a set of choices, a hyphen denotes a “gather point”,
where divergent flows are collected again, before the next choices are
shown.
The structure was designed to prevent dangling loose ends. Whatever

the player chooses, the flow will fall from top to bottom. It always
moves forwards and, by default, it always reaches the end.

CONTENT AS CONDITIONALS
Two choices in the example are labelled: “dull” and “zany”. Labels are
optional, but if a label is given, it can be queried later, to turn on or off
new choices or to vary the text.
The use of paragraph labels as conditionals was originally a mere

convenience—it’s less typing than defining and then setting a Boolean—
and so it makes branching easier to do at scale. But the design comes
with two powerful restrictions. Firstly, a paragraph label condition can
only be set in one place in the entire script. Secondly, once set,
a paragraph conditional can never be unset.
This means despite 80 Days branching interactive script running

longer than The Lord of the Rings, if you ever want to know if the
player chose the “zany” option in the first section of the game, you can
be confident that “london.zany” will test exactly that and only that.
Paragraphs labels are the default way to do branching in ink, and

they are intrinsically “only forwards” in design: accumulated by the
player and never lost.

SEQUENCES AND LOOPS
Furthermore, options in ink are, by default, once-only. So, in a more
open game, like the Sorcery! series, it’s efficient to write a location as
a hub of options that turn on as they are discovered and, once taken,
cannot be repeated.

Designing for Narrative Momentum ■ 81

=== temple ===
{The temple of Courga is decorated with the finest gold

tapestries.|You are standing in the temple of Courga once
more.} The statue of Courga himself dominates the room.
- (choices)
* (look) [Look at the statue]

The statue depicts Courga as his followers choose to
believe he is. Extremely large, extremely happy, and ben-
evolent{courga_has_trap:, except for the poison darts
inside his mouth}.
* (courga_has_trap) [Look for traps]

You scour the walls and floor for traps, but find nothing.
Then, as you stand from your stoop, you notice a curious
steel glint within the dark mouth of the statue. {look:
Darts.}
* {look && courga_has_trap} {pick_up_rag}

[Stuff the rag into Courga’s mouth]
You block up the statue’s mouth with the filthy rag in one

quick movement. There is a quiet /thunk/ from deep inside.
The darts have fired—but you are safe.
// etc...
+ [Leave]

{You turn and walk through the double doors back into the
sunlight.|You bid Courga farewell once more.}

-> outside_temple
- (loop) -> choices

The braced content at the top indicates content printed sequentially,
so the player gets a different description on entering the temple for the
first time than on subsequent visits. Again, sequences are “only forwards”
and cannot be reset!
The hub structure is a loop: each choice elicits a response then falls

down to the “loop” point, which bounces the flow back up to offer more
choices, until the “leave” option is chosen. (Leave is marked with a +
bullet, which tells ink this particular option isn’t once-only.) Players
may or may not unlock the significant actions in the hub—they may be
missing crucial items or information. Regardless of what they achieve,
players will work their way through some, or all, of the available
content, until they choose to leave or there is nothing else for them to
do. Forwards movement is guaranteed.

82 ■ Procedural Storytelling in Game Design

NARRATIVE MOMENTUM IN A GRAPHICAL CONTEXT
This “only forwards” approach to default logic and structures in ink
informs the narrative structure of both 80 Days and Sorcery! Revisiting
and backtracking are disallowed entirely in 80 Days and actively
discouraged in the Sorcery! games (as a last resort, if players enter now-
empty locations, the entire text of a Sorcery! location will be simplified
to a single sentence or omitted entirely).
Both games aim to avoid the issue of location cruft while using new

locations to provide both momentum—you keep getting them—and
player freedom—you get to choose where you go. How does this
approach fare in a more graphical environment, where content produc-
tion is expensive and locations can’t be handed out in an arbitrary
fashion like stickers in a primary school?

Heaven’s Vault

In our console title Heaven’s Vault, we built a set of detailed 3D
environments, which the player can unlock and explore in more or
less any order. Within each environment, the player explores, burning
through actions in the world in a similar fashion to Sorcery!
In early prototypes of the narrative flow, narrative momentum was

a problem: players would scour a room and hoover up interaction
hotspots before moving to the next room to repeat the cycle. Watching
testers play was like watching a Roomba execute its program.
Heaven’s Vault is an archaeological adventure game and the intention was

to have the player produce, test and resolve theories about what a place was
and how it fitted into the world and history of the game. (Archaeologists are
essentially detectives, except they arrive rather too late, and never get to bring
all the suspects together at the end.) Our interactions all felt isolated;
exploring one corner of a location didn’t impact much on the others. We
wanted to create real spaces, rather than game spaces with sliding blocks and
light-beam puzzles, but as a result the spaces felt vacant and inert.
We realised that in-world interactions were not going to provide the

momentum we needed. Unlike Sorcery!, in which every option in a room
can be accessed with a tap, there’s simply too much travel time from prop
to prop in a 3D world. Our story needed to be about understanding
the environment rather than manipulating it. Another game might use

Designing for Narrative Momentum ■ 83

environmental storytelling in a passive, optional way, but we needed to
foreground it and have the characters explicitly observe and work on the
connections they find. We needed our momentum to come not from
action but from knowledge, from a steady accumulation of insight about
the world of the game.
To achieve this, we began to model not just where the players had

been and what they’d done but what they knew and believed about the
world. We designed a knowledge-tracking system, once again employ-
ing an “only forwards” philosophy to make the result something we
could rely on and scale.

KNOWLEDGE AS AN ACYCLIC DIRECTED GRAPH
Our core principle is that knowledge starts vague and becomes increas-
ingly specific. We model knowledge about any particular topic as
a chain of states, each more detailed than the previous. We apply two
rules: 1) once a fact has been learned, it can never be unlearned and 2)
learning a fact automatically learns all the preceding facts.
If we had used this system in 80 Days, we might have had the

knowledge chain seen in Figure 7.2.
In the first moments of the game, players learn the first fact, but they are

unaware of the time limit or reason for the journey. Later, Fogg might
mention the 80-day target; this causes the second knowledge state to be
marked as achieved. However, Fogg might instead leap ahead and tell you
that the trip is a bet (apologies, Monsieur, I mean a “wager”); if he does, the
game sets the third state and the second state is automatically filled in—
players get the terms of the bet for free, without that fact having to be
explicitly marked as learned by the writer.
The script of the game then tests against this model using “knowledge

intervals” rather than knowledge states: a typical line in the script might be:

FIGURE 7.2

84 ■ Procedural Storytelling in Game Design

* {between(GOING_AROUND_WORLD, ITS_A_BET)}
I asked Monsieur Fogg if there was anywhere particular in

the world he wanted to see...
* {between(GOT_80_DAYS, ITS_A_BET)}

Why eighty days, I wondered? Was there an event Monsieur
Fogg needed to return to London for? A wedding, perhaps?

The “between” test is just prescriptive enough: it asks “do I know
enough for this to make sense, but not so much as to make it
redundant or nonsensical?” Better yet, it’s future-proof: should we
later add more detail to our knowledge chain—say, inserting a state for
“We’re travelling very fast” between “going around the world” and “got
80 days”—none of the existing checks need to be altered; all should still
work as intended. We only care about the ends of the interval, not the
detail inside it, so that detail can change.
A game will, of course, have a lot of parallel chains; so “between” can

happily test using states from more than one chain. Perhaps later in the
game we meet the mysterious Monsieur Fix of London, who in our take
on the novel is not a policeman at all, but is merely pretending to be
one (Figure 7.3.)
We could then combine elements of this knowledge chain with the

previous one to create subtle variations in the choices available.

* {between((TRAVELLING_IN_A_HURRY, MET_MONSIEUR_FIX),
FIX_IS_A_POLICEMAN)}

I wondered how on Earth Monsieur Fix had kept pace with us
[]—and why he had troubled to travel so very quickly.
* {between((FIX_SAYS_FOGG_IS_A_THIEF, TRAVELLING_I-
N_A_HURRY), (ITS_A_BET, FIX_IS_A_LIAR))}

My master, a thief?[] Was that why we were running so very
fast—to outstrip the grasp of the law?

MET_MONSIEUR_FIX

Monsieur Fix... ...is a Policeman... ...No! He is a liar!

FIX_IS_A_POLICEMAN FIX_IS_A_LIAR

FIGURE 7.3

Designing for Narrative Momentum ■ 85

Here “between” is taking multiple arguments: a first set of states that
must all be true (the minimum requirements) and a second set of states
of which none must be true (the conditions for redundancy).
The flexibility of the “between” test also means we can split up long

chains into multiple shorter chains if, as the game goes on, it turns out
that one fact doesn’t necessarily imply all those below it. Equally, single
facts (chains of length 1) can be extended if it turns out a fact could use
a little more detail after all, and such an extension again doesn’t require
rewriting or reviewing any existing tests against the original state.

KNOWLEDGE WEBS
Knowledge chains do not need to be entirely one-dimensional; they—
like CYOA books—are really acyclic directed graphs, branching when
one vague fact splits into several specific details and re-joining when
a fact synthesises multiple different chains of sub-information
(Figure 7.4.)
Here, knowing a later state implies knowing all the states leading

up to that state, so discovering that Fix is in fact a saboteur will mean
learning that your journey is a bet, and that Fix is not a real policeman.
(And if that’s more than it should imply, we restructure the web.)
In Heaven’s Vault we have over 1,500 knowledge states split across

some 700 chains, some of which are 10 states long, some of which
contain only a single state and are just glorified Booleans (but that
might be upgraded at any moment). Maintaining this can be tricky, but

FIGURE 7.4

86 ■ Procedural Storytelling in Game Design

it’s made significantly easier by the assumptions of the “only forwards”
design.
Because laying out the structure of the knowledge map is separate

from the business of writing actual content for the game, the writer can
largely ignore it when they’re actually writing. For any given topic, first
one lays out a sensible-looking knowledge map, then one writes content
that seems interesting and relevant; finally, one marks up the content
with what facts the content contains and what its minimum and
maximum requirements are. But that mark-up is static: there’s no need
to think through flow, order, or cause and effect!

USING THE KNOWLEDGE MODEL
With this knowledge system in place, the rules for authoring game
content to generate narrative momentum are as follows:
Rule One: no line of dialogue, action, or scene is allowed to occur

unless it is acceptable and non-redundant; that is, the player’s current
knowledge lies between an unlock state and a reward state. Most
locations in the game have multiple unlock states and multiple
reward states, so they can be triggered in a variety of contexts and
for a variety of different outcomes. Since every line of dialogue is also
gated, what the characters talk about within a scene will change
automatically as well, depending on what trigger, or combination of
triggers, allowed the scene to begin in the first place (and on anything
else relevant as well, of course).
Rule Two: every scene, and also a decent proportion of the dialogue,

should move something forwards. For scenes, that’s the unlocking of the
“reward states” as mentioned in the paragraph above—significant discov-
eries that move the wider game along. For individual beats of dialogue, it
means that something in the knowledge model, whether minor or sig-
nificant, should be moved forwards by whatever the characters discuss.
Rule one enforces continuity and ensures the game is always giving

the player something worth doing. Rule two is the engine of our
narrative momentum. If every action in the game is gated to ensure it
will move some part of the knowledge model forwards, then so long as
players have found anything to do, then everything they do will cause
progress. The game has velocity, and hence momentum, no matter

Designing for Narrative Momentum ■ 87

where players are or what they’re doing, and no matter whether the
scene they’re in is tightly linear or extremely open. Because players are
always stepping, and every step is only forwards, the player will,
eventually, have to reach some kind of ending.

Narrative Momentum via Dialogue

The game then only needs to ensure there is enough content to cover all
the states the knowledge model can reach so that the player will never
run dry. This can be grunt work, but it’s fairly low risk; a question of
“just writing more” but with little requirement for one piece of content
to be carefully balanced against another, as each will only show up
under the correct circumstances anyway.
It also means the game can be effectively tested by an automated

process, which randomly bashes through the content and moans if it runs
out of things to do. (Of course, the automatic tester won’t tell you if the
story makes no sense; coherence is a human problem.) Of course, we still
have the problem of finding things for the player to do. In-world actions
are a limited resource—players can only look inside so many cupboards
and turn on so many lamps. Indeed—let’s be honest now—they can only
shoot so many henchmen. But dialogue between characters is an inter-
active with far fewer limitations and one that suits the requirement of being
powered by a knowledge model very nicely. Realising this resolved our
issue with Heaven’s Vault’s pacing. We implemented a dedicated, active-
everywhere button to initiate conversation that draws content from the
script based on what’s currently happening within the knowledge model.
Our Roomba-style game loop becomes something more detective-like.

Players enter a room and interact with an in-world prop, which stocks up
the dialogue system, so as they walk to the next hotspot, they can talk with
their companions about what they’ve just seen and done, learning and
deducing new ideas and raising new questions in the process.
The moment in the game where momentum might normally dip—

when the player is leaving an exhausted action point and looking about
for another—now has a momentum of its own. It’s a mode of
momentum—discussion and reflection—that’s rare in games but would
be familiar to any Chandler reader. But it’s all still under players’
control, entirely narrative, and there’s no need for any gunmen to pop
out from anywhere. Well, not quite so many, anyway.

88 ■ Procedural Storytelling in Game Design

CONCLUSION
Narrative momentum is the core property of a story. It emerges from
the tension between what is happening and what is about to happen;
and in games it flags during those moments where nothing is happening
and players have no idea what they are supposed to be doing next.
When progression is defined entirely by movement through space,

players who are physically stuck, or stationary, are also narratively
stuck. By formalising our knowledge model, Heaven’s Vault has
a second axis for creating robust, measurable narrative progression,
available while players are standing still, walking around in circles, or
perhaps simply looking at the view.
We can’t stop players putting the controller down and walking away.

We can’t ensure they’ll like the game. But we can, and should, invite
players to take just one more step, so that, after a while, they can turn
around and see how far they’ve come.

Designing for Narrative Momentum ■ 89

This page intentionally left blank

CHAP T ER 8

Curated Narrative in
Duskers

Tim Keenan and Benjamin Hill

EXPLORE, ADAPT, SURVIVE
Procedural and hand-crafted content in games seem at odds with
each other. Procedural content, by its nature, is unique to each
player. Algorithmically creating content allows for what we call the
“player story”: a unique story that players can recount to friends and
forum-dwellers about their personal experiences while playing
a game. Whether that’s the time you forgot to close the airlock and
suffocated half of your crew in FTL or failed to manage provisions,
causing you to lose your mind and eat your entire crew in Sunless
Sea, the power of personal player story is undeniable and wholly
unique to games.
Thus, it can be exciting to read other players’ stories, to see how

similar and drastically different they are from yours. These stories, on
their own, tend to not rival the great fiction of our time, but since it’s
your story, it doesn’t have to. The unique nature of the story makes it
special. Hand-crafted content, on its own, can be much more compel-
ling than procedurally generated content when compared out of con-
text. The craftsmanship of a well-curated experience can be incredibly
moving. This is why we read books and watch films. Video games allow
for interaction, and steering the player’s interactions such that they have
no options when following the intended hand-crafted content can rob
games of what makes them so unique and compelling.

91

With our sci-fi roguelike, Duskers, we knew we were going to use
procedurally generated content to create the player story we find so
powerful in games. But with our writing team having backgrounds in
creating strong hand-crafted stories, we wondered whether we could
bring the strengths of hand-crafted content to Duskers without robbing
players of their unique story.
Before answering that question, we should probably answer: What

is Duskers? In Duskers, you pilot drones into derelict spaceships to
find the means to survive and piece together how the universe became
a giant graveyard. Each time you lose your squad of drones to the
dangers of exploration, you reset to an entirely new procedurally
generated universe to explore. The game creates a sense of isolation,
as you creep your drones into these tombs using a command line
interface reminiscent of ’80s film favorites like Alien. With that
cleared up, let’s get back to the question; Could we bring the
strengths of hand-crafted content to Duskers without robbing players
of their unique stories?

WHEN ALL YOU HAVE IS A HAMMER
As traditional storytellers, our first instinct was to approach the problem
as we would any other narrative-rich medium. To create the world
story, we began to structure a skeleton plot for Duskers and attempted
to give the player character a clear and grounded role within that
universe. Our focus here was to tell a really rich story about the world,
through exploration, whilst unveiling the characters’ backstory as they
progressed, eventually reconciling these fragmented worlds.
While this work was very useful in creating a type of bible for the

world, it immediately became apparent that the linearity of plot created
massive dissonance with the procedural nature of play. The linear
structure interfered with the stories that players were creating for
themselves. In our minds, the player story was king, especially in
roguelikes, and we wanted to stay true to that and to our players. The
game was pushing back against our well-meant efforts to place narrative
boundaries around the systems that made the game of Duskers so much
fun to play. We thought we were set-dressing the game experience, but
in fact we were trying to control it.

92 ■ Procedural Storytelling in Game Design

We wanted a fiction that brought the curation of a well-authored tale
but conformed itself to the player, not the other way around. How do
you make static, curated narrative conform to the dynamic player story?
We focused on three answers, each pushing the narrative closer and
closer to the player story. The same overall curated content needed to
create different meaning for different players, be responsive to players’
choices, and ideally, push the gameplay in novel directions.

ORDER MATTERS

The Same Overall Curated Content Needed to Create Different
Meaning for Different Players

If we start with the understanding that the curated content is static,
are there ways we can have players digest that content differently,
interpret it differently, such that they infer different meanings from
it? At some level of granularity, the pieces we could play with were
going to be statically defined, but could we be clever with how they
were combined? Isn’t that what procedural systems do? If letters can
be combined in different ways to make different words, and words to
make different sentences, could larger content like paragraphs or
scenes be the same?
Her Story shows us that this is possible. The content is clearly static:

short videos of a woman being interviewed about a murder. However, if
you watch two people play the game, snippets of story are seen in
different orders and that story is experienced in entirely different ways.
It’s entirely possible that this could even change the ways players
interpret the story and the characters portrayed in it.
We were curious to see if that was the case, so we set up a simple test.

We created two example logs that players might find on different
derelict spacecraft. One log would be from a scientist that found
a dead rat near a food replicator and had serious concerns that the
device could be malfunctioning to disastrous effects. Another would be
a conversation between two support techs, complaining that someone
who found a dead animal on a spacecraft would think the replicators
were going to do irreparable damage to the crew. Would reading one
before the other “anchor” you to that viewpoint and then reading
the second validate that viewpoint?

Curated Narrative in Duskers ■ 93

Example Log One

[Record Start]
@SRamirez: Stop dwelling on it man. I get complaints like
this every day—filter in, filter out type of stuff. I had
a complaint from someone once saying he’d a stomach ache
after eating three slices of cake from a replicator. Three
slices, and the guy’s blaming the assemblers!! Do you know
how many dead rats they find on vessels every day? You’ve
got nothing to worry about, just a bored scientist in
space.

@JMartin: Haha, yeah I get you man, and I know you’re right.
We made it that they can turn a brick of sludge into
whatever they want for dinner. I even hear we’re close
on our first cured disease! Quality of life stuff you
know. They don’t get how much better everything is now.
Seriously, do you remember how bad freeze-dried ice-
cream was?

Example Log Two

[Observation Report]
We’re a little unsure how the rat got down there, most
probably an escapee from the labs on C-Deck. Decomposition
is isolated to the lower abdomen but is inconsistent with
the rest of the remains, a seemingly foreign viscous mate-
rial covering what may have been an initial wound.

There have been some concerns regarding the molecular
assemblers that are installed aboard the vessel, and with
the rate of decomposition being so peculiar I recommend an
immediate report be sent to Leyland Corp. Something isn’t
right, and if it is what I fear, then we need to do something
about it fast.

To test this theory, we created a website that would present the two logs
in a random order before asking a series of questions to answer after
both were read. While not overly scientific, our initial results showed
that the order that you read the logs did affect how you responded.
Most of those who read the scientist’s email first generally felt the
scientist was onto something and the operators were being obtuse,

94 ■ Procedural Storytelling in Game Design

while most of those who read the operator’s conversation first were
more likely to think the scientist was overreacting.
In Figure 8.1, the top graph shows respondents who were shown the

operators’ conversation first, while the bottom graph shows those who
first read the scientist’s email.
To be fair, as we got many more data points, the tendencies started

to blur, so this was far from definitive, scientific research! However,
this tendency of players to infer different meanings based upon the
ordering of information is something we observed in various other
experiments and when reading players feedback on other titles. The
simple takeaway is that order matters. If we broke the stories into

Based on the above communications: How concerning do you think the dead
rat is?

(22 responses)

Based on the above communications: How concerning do you think the dead
rat is?

(26 responses)

Not at all

50%

22.7%

27.3%

38.5%

26.9%

34.6%

Slightly Concerning
Decently Concerning
VERY Concerning

Not at all
Slightly Concerning
Decently Concerning
VERY Concerning

FIGURE 8.1 The top graph shows respondents who were shown the operators’
conversation first, while the bottom graph shows those that first
read the scientist’s email.

Curated Narrative in Duskers ■ 95

a series of small ship logs from different points of view, we could start
to have players experience the narrative differently and possibly draw
different conclusions from them. This brings it one step closer to the
player’s story.
In order to capitalize on this more fragmented approach, we had to

make sure that players had anchor points within the game’s universe so
it wouldn’t be difficult to make connections. If we didn’t, the game’s
narrative could become so fragmented that it’d be a struggle for the
player to remember it all or so diluted that no meaning could be
derived. To achieve this, we created pillars of information that would
allow easy connections to be made. In Her Story, the words you type
into the search engine help create connections directly. In Duskers we
didn’t have this feature, so instead we used a small array of consistent
themes, such as corporations, people, and existential threats, across the
game for people to latch on to. This also let players’ imaginations run
wild with conspiracy theories and, we hoped, connect themes and
corporations in unexpected ways.
To add variety, we created five different storylines for how humanity

may have ended. Players would stumble upon these storylines based on
how they played and how the universe was generated and could attack
these storylines in any order they saw fit or simultaneously. So now you
could read each storyline in different orders, in addition to the logs
within each storyline. We were hoping that this would not only max-
imize options while playing, but also further differentiate one player’s
experience of the narrative that of another. In addition, we created
consistent corporations with specific identities (such as Muteki and
Leyland) throughout the universe; we could then name drop, creating
suspicion. A player could get a log from the pandemic narrative arc that
mentions a shady Muteki vessel and then find a Muteki log discussing
research into nano-bots, allowing them to draw connections between
nano-bots and the pandemic. Creating a controlled array of repeatable
subjects or characters made drawing conclusions for the player easy
work. This freed us up to really support those connections with juicy
context, story, and red herrings.
Finally, let’s not forget the role that emotion plays in imbuing mean-

ing into narrative. The same emotion can elicit different responses in
different people. Duskers designs pillars centered around emotions, and

96 ■ Procedural Storytelling in Game Design

we wanted the narrative to support that. One of the main pillars of the
game was isolation, but after playing the game for a while players dulled
to the fact of being isolated. We needed a way to remind them that they
were alone.
One way to do this was to send you messages from someone that

seemed to know them. This would remind them that they had no one to
talk to, that they were devoid of connection, aside from the drones that
they commanded (which we hoped they would anthropomorphize and
realize how crazy it was to care about a machine completely devoid of
autonomy). In this way, the narrative could support the emotional pillar
of the game, while making players feel something in a unique way for
their particular games.
We intended these messages to be delivered in order, as we had

intentionally written them. But upon experimenting, we felt it more true
to the game if, with the exception of the first log and the very last log
received, that everything would be doled out in a random order, giving
each player a unique experience with the backstory. This added yet
another axis by which the game could be uniquely interpreted by each
player.

LET THE PLAYER DRIVE

The Curated Content Needed to Be Responsive to the
Player’s Choices

One of the reasons static fiction feels so contrived in video games is that
the player has agency yet can’t affect the fiction. While players can make
choices, they ultimately experience the fiction in the same linear manner
despite those choices. This makes choices seem less meaningful and the
narrative more contrived or “on rails.” If we wanted the fiction to
conform itself to the player, it is important to never force the player’s
hand. Instead, let players be the driving force. In Duskers, our log
system allowed us to achieve this in an integrated way.
Gone Home is a game about a family that’s told entirely through

environmental storytelling. In it, you explore an empty house when
nobody’s home. Even though the stage is set, and static, the player
moves through the space, deciding what to look at and when. Not only
does this change what different players see, and in what order they see

Curated Narrative in Duskers ■ 97

it, the players have agency over those choices. To make an analogy to
procedural systems, it’s like each player becomes the seed number that
affects the content generation. Plug in different players, and what
catches their eyes and how they interpret it can change the experience.
To go back to our Her Story example, the player doesn’t get a random

ordering of video snippets. Players choose the search terms as in an
Internet search, which then serve them up any videos that have those
terms in the transcript of the video interview. If they hear about
a character and a location in a video, one player may be more interested
in the character and search for that, while another may search for
videos about the location. Each of these will set them on different
paths and even possibly lead them to different conclusions, all with the
same static content.
The lesson we learned is that not only did order matter, letting

players be in control of that order was even more powerful. Given this,
and the fact that we know that curated narrative can give the player
mid- and long-term goals, we crafted portions of the curated narrative
as a series of objectives that could be attempted in different orders. As
an example, one of the storylines hypothesized that a cosmic event
wiped out humanity. Scientists write back and forth about their frustra-
tion with the military and Muteki (a tech corporation largely invested in
Artificial Intelligence), possibly sending them altered samples from
some of the earliest ships that went dark. The scientists sent an
algorithm to all research stations hoping that someone would be able
to obtain a second sample to verify the accuracy of their findings from
the first sample. Therefore, the player needs to commandeer an older
vessel (one of those that went dark earliest) and bring it to a research
station for scanning using the special algorithm.
There is a large variety of ways to accomplish this within this

objective, including not attempting at all. The same player may attempt
it differently depending on the run. On one run the player finds an old
ship and attempt to commandeer it right away or finds a space station
first then works on gathering equipment to help find an old ship. And
then there’s what kind of enemies are aboard that ship, what equipment
players have when they board, how the ship is laid out, and what events
occur while they attempt to commandeer it. These are all procedurally
generated (and we’ll see an example later in the chapter). The narrative

98 ■ Procedural Storytelling in Game Design

and gameplay now started to complement one another and more
seamlessly integrate.
Rather than be on the nose with objective pop-ups, we decided to try

a more integrated approach that supported this seamless integration
between story and gameplay. We fashioned an AI ship companion
named JIL, who would analyze annotate logs. If JIL identified an
objective, we would then store that log in a specific folder on the ship.
This was an unobtrusive and cohesive way for us to integrate an
objective system into a game that we wanted to be player-driven.
In addition, the narrative became the persistent element of the game;

keeping all logs for reference across different runs (playthroughs). This
tied into another of our design pillars: realism. The player remembered
these logs across runs, so it felt right to incorporate that fact into the
fiction rather than ignoring it. The game takes great effort to convince
players that they are drone operators, not playing as drone operators
(literally, the real-life computer screen acted as the in-game computer
screen), so working the player’s memory into the fiction felt in line with
our design pillar of realism.

NARRATIVE AS A LURE

The Curated Content Needed to Push the Gameplay in
Novel Directions

In our previous game, A Virus Named TOM, we found that some
achievements we put in the game actually required the player to play
the game entirely differently, instead of just rewarding them for playing
the game normally. We always felt that these were the best form of
achievements, because they brought about new gameplay. For this
game, we asked: “Could we do the same with narrative, and could that
strengthen the players’ experience of it?”
We played a lot of Duskers while creating it. In all of this play, we

started finding incredibly fun moments where our own player stories
came to life. At one point we re-docked our mothership to a different
airlock on the derelict ship so that our drones could escape. When the
airlock opened, an alien charged out of our mothership’s docking bay
and destroyed the entire squad of drones in seconds. We realized the
alien had somehow wandered into the docking bay of our mothership

Curated Narrative in Duskers ■ 99

and taken a ride to the other side of the derelict ship inside of it! We
remembered this experience when, in a different run, we were desperate
to help our drones escape but were unable to remove an enemy from
the path to an airlock. So this time, we left the docking bay open, waited
for the alien to wander inside, and trapped it in the docking bay! We
then re-docked on the other side of the derelict ship and let it out—thus
removing it from the path to the airlock. We were now using the
docking bay as an alien transport!
We loved that experience and realized that many players would never

have it, so we devised a narrative that could re-create a version of it.
One of the theories of how humanity died was a form of pandemic.
Logs could be found from a medical scientist named Dr. J. Holmes, who
created an algorithm to detect pathogen data. A subject (one of the
organic alien enemies), however, needed to be scanned. To do this, the
player needed to download the algorithm to the ship and lure an enemy
from a quarantined derelict ship into the docking bay to initiate the
scan. The player would then need to somehow find Holmes’ ship to
analyze the results of the scan.
By creating a narrative objective where the player needed to lure an

organic enemy into the docking bay to scan it, we were able to motivate
the player to experience a variation of one of the most exciting
scenarios that we had stumbled upon while playtesting. We then read
lots of player stories on our forums and subreddit about the variety of
ways that players attempted this, with what enemy, and the narratives
that the players had built up in their heads as to how and why it was all
happening.

I did it. I found Dr. J. Holmes.
I was down to just 2 drones. I was doing the bare minimum

for each mission, just grabbing what scrap I could from the safe
first rooms. I even managed to pull off a cunning plan to capture
a quarantined biological enemy in my docking bay and run the
scan.

Then I was just burning my resources just to keep gather and probe
working, (repairing probe and replacing gather…), was running out
of things to scrap; just hunting medical ships, desperately trying to

100 ■ Procedural Storytelling in Game Design

find some clue as to what 1185 meant. Dammit, I might die, I might
run out of fuel, but I was gonna burn what I had if it gave me
a chance to deliver that sample.

In my mind, maybe—just maybe—that would be enough to rescue
whatever remained of civilisation.

And I finally found it. With barely any fuel left and no resources left
to burn. The registry that, at long last, told me where Dr. J. Holmes’
ship was, and what it was called. (The communication was on a med
ship for me, if anyone else is also hunting.)

…

…And I’d already been there.

Reddit post from Nathin

First, that player’s story shows the unique ways Nathin achieved the
goal (which we talked about in the previous section) using the proce-
dural content of the game: running out of fuel, using the probe and
gatherer upgrades, coming up with a “cunning plan,” etc. Second, it
shows how the curated narrative led Nathin into a compelling experi-
ence they may not have otherwise had, as well as how it added color to
the way they imagined and described their personal player story:
“desperately trying to find some clue as to what 1185 meant,” “I might
die, I might run out of fuel, but I was gonna burn what I had if it gave
me a chance to deliver that sample,” etc.

COMPILING IT ALL DOWN
So during the development of Duskers, we found a few methods of
conforming static content to the player story that we were happy with.
Something as simple as breaking the story into smaller fragments and
allowing them to be experienced in different orders was a start. Giving
players agency in how they discovered and followed the trail of these
fragments adds even more meaning and a stronger link between the
player and the curated narrative. Finally, integrating that narrative into
the gameplay and even forcing new ways of playing further entwines the
player story and the curated narrative, so much so that the player story
starts to take on elements of the curated narrative.

Curated Narrative in Duskers ■ 101

We found many forum posts from players, not only telling their
player stories, but also incorporating the curated story into their
personal fictions to give them more context and meaning! Things like
“I was petrified of trying to capture one of these monsters in my
docking bay, but ‘for science’ I tepidly boarded the ship, and you
won’t believe what happened. … ” This is essentially what our highest
aim was, to help strengthen the player story with our own world-
building and storytelling.
There’s so much to explore when you add player interaction into

a narrative experience and vice versa. We learned a lot on our journey
developing Duskers, but there’s so much more to discover. We hope
that, by composing this story of our design journey, we inspire you to
delve deeper into the abyss, and that you can tell us what insights you
find lurking in the darkness.

102 ■ Procedural Storytelling in Game Design

CHAP T ER 9

Uncanny Text
Blending Static and Procedural Fiction

Kevin Snow

P rocedurally generated text is a subject I have stumbled into, not
intentionally sought out, over the years. So far, I have only

incorporated procedural generation in ways that complement
a static narrative, instead of starting projects with any fully formed
ideas of how the procedural text will work or even knowing if the
project will have procedural text to begin with. Still, it is in these cases
a fundamental aspect of my work. At other times, it is silly and tacked
on. Both of those approaches work out because procedural text has
qualities that explode meaning in static narrative in complex, joyful, and
uncanny ways.

SOUTHERN MONSTERS
When I demoed Southern Monsters at a small convention in the Midwest,
one attendee playfully wanted to break the game. He read through the
nightmarish introduction, had a conversation with an NPC or two,
and then chose to take a shower—over and over and over. “Oh, the
words changed,” he said about the second shower. “Oh, this is getting
sad.” After showering nine or ten times, he made a huh sound and left
the booth.
Although the shower text generation in Southern Monsters is simple,

it was at least enough to mildly surprise that disinterested attendee.
Southern Monsters is a combination of static and procedural text. Story

103

events, like character conversations, have fluid structures, but their text
mostly remains the same. Repetitive actions, like showering or eating
food, transform in front of the player in response to the game state
(Figure 9.1).
This came about because Southern Monsters’ content informed the

structure, a slow process in which I overhauled the core systems several
times in the game’s first year of development. Southern Monsters is
a semi-autobiographical game about a teenager in south Arkansas who
moderates a forum for believers in the paranormal. At night, he
searches the swamp outside his house for a regional variation of Bigfoot
called the Boggy Creek Monster.
All the systems in Southern Monsters explore how that teenager,

Cripplefoot, copes with trauma from domestic violence. The character
doesn’t understand they’re traumatized, or why they react the way they
do. The game contextualizes the character’s complicated routines of

FIGURE 9.1 Shower text generation in Southern Monsters.

104 ■ Procedural Storytelling in Game Design

self-care and depressive impulses inside these systems. Few mechanics
surface; there’s no “depression meter.” The player should feel as helpless
as the character, like there’s a logic at work too convoluted to ever
comprehend. These systems are modeled after my own past behavior,
after years of therapy and reflection.
Cripplefoot’s mood is tracked with numbers and words. The numeric

mood is a percentage that gets converted into a whole number between
1 and 3 to simplify the possibility space. With the numeric mood,
there’s a small amount of randomness, so although the system (and
therefore Cripplefoot’s behavioral trends) can be learned, it can’t be
reliably gamified. There’s also a qualifier that adds context to the
numeric mood called the “current mood” (named after the beloved
LiveJournal feature). Neither mood is visible to the player, but both
affect choice text and text generation. The convention attendee, through
his endless showers, had achieved a current mood of “self-loathing.”
Effectively, the current mood adds an optional filter: Why does Cripple-
foot feel this way?
The procedural text generation in Southern Monsters is guided by

those systems and has to reinforce their mission. Eating a marshmallow
pie can be a pleasurable activity for Cripplefoot, unless some factor
turns it into a negative experience, such as eating too many in a short
amount of time. So the game has to consider several factors when it
decides what text is appropriate. How did Cripplefoot feel before the
marshmallow pie? How did his mood affect the experience of eating and
vice-versa? How about after?
When players experience story events in Southern Monsters, such as

moderating a forum thread or speaking with an NPC, they’re carrying
meaning from those procedural moments. Cripplefoot’s mom might
comment if he hasn’t showered, and his mood affects the range of
choice options. The separation between static and procedural became so
minor over development that the distinction’s only useful to explain
how it got there.

BATTLECAKES
Battlecakes is an RPG in which a batch of cupcakes goes on a quest to
save the world. The game is developed by Volcano Bean; I’m the

Uncanny Text ■ 105

narrative designer and one of the writers. Although the structure of the
script is standard for RPGs, the developers gave me creative freedom to
work in small moments of procedural generation in the narrative.
Early in the game, the main character adventures to the library in the

town of Butterworth Heights. If the player interacts with the shelves, the
main character reads off one of the book titles andmakes a generic comment
about it. The names of the books are generated to have the structure of
academic textbooks with the vocabulary of cookbooks (Figure 9.2).
Output examples:

1. Discovering Banana Cake

2. Sixty Years of Baking Mysteries

3. Ice Cream & Philosophy: The Hidden Connection

FIGURE 9.2 Book name generation in Battlecakes.

106 ■ Procedural Storytelling in Game Design

The capacity of procedural text to be random and unexpected
makes it a perfect fit for the tone of Battlecakes. It’s a game in
which every aspect of the narrative is supposed to surprise the
player, from the dialogue that takes inspiration from shows like
Steven Universe and Adventure Time to the map design that
encourages curiosity and exploration. Although the book generator
isn’t complex, it would have been easier to write a list of funny book
titles and shuffle between them. The play experience would have been
the same for the majority of users, but the uncanny tone of generated
text is the point.
An excessively curated grammar would have removed some of the

fun as much as a shuffled list. I iterated on the system just enough for
the output to be diverse and for word soup to be infrequent instead of
non-existent. That is accomplished by categorizing lists of words by
syllable and allowing a maximum number of syllables per generated
book. Ultimately, the book generator doesn’t hold up to close scrutiny
and doesn’t need to. As with any toy, players can move on once they’ve
become bored.

PLAYFUL TEXT
At Konsoll 2017, Jake Elliott of Cardboard Computer gave a talk titled
“Playful Text,” in which he presented a philosophy of procedural text
design that emphasized “open, organic possibility spaces.” He talked
about the influence of postmodernist art on the design of procedural
text in Act IV of Kentucky Route Zero, gently but intentionally contra-
dicting traditional design thought that evaluates the success of proce-
dural text in game design purely by player agency and binary dialogue
choices. Elliott succinctly summarized the ability of procedural text to
draw out meaning in otherwise static narrative.
The most complex text generation in Southern Monsters happens

when the player watches cat videos. The function picks a genre, such
as a cat sleeping or playing, then a paragraph structure, then individual
sentence structures. Horizontal decisions are made as follows: If snow is
mentioned, context is set to snow. If the function adds an additional
clause to a sentence, the clause will check the context and describe an
appropriate detail.

Uncanny Text ■ 107

Output example:

A lean cat attacks a stuffed fish under a blanket. The cat shreds
the fish, spilling cotton everywhere, while someone shrieks off
camera. I rewatch the video, again and again, to absorb the
scene’s warmth.

Still, this text generation is simple. There’s no weight given to
particular words, phrases, or sentences. The context variable is flavor,
not a tagging system. It’s only even this complex so it creates relation-
ships between sentences—other procedural text in Southern Monsters is
sentence-length. The scope and specificity means it’s feasible to cut
down on bad output with iteration, so the procedural text doesn’t need
to be complicated.
Like other content in Southern Monsters, the cat videos both inform

and respond to Cripplefoot’s emotional state. That means Cripplefoot
can watch a cat video and become more depressed, modeling my worst
tendencies of idly scrolling through meaningless content when I really
need to sleep. When the result of an action feeds back into a game state
variable, it’s not sophisticated: If the player is frequently making lots
of small choices, the numbers can be tweaked in playtesting, with
context-specific filters (the “current mood”) catching exceptional
situations. At heart, though, a corpus of cat videos is joyful—at least,
it is if you love cats and animals like I do. Southern Monsters isn’t
miserable, or even fixated on misery. I want its procedural text to
evoke the nuances of routine.

THE DOMOVOI
I released my first game, The Domovoi, in 2014. Made with Twine, it’s
a short, interactive story where the player listens to a Soviet folklorist
perform a story about a domovoi, a house spirit. It has limited branch-
ing with two endings and makes heavy use of Twine’s randomization
features to change the text in subtle ways. “Even this performance will
change—words will be different in your memories than when you first
heard them,” the narrator tells the player early in the story. Subtext is
for cowards.

108 ■ Procedural Storytelling in Game Design

The game is not-so-secretly about my experiences with post-
traumatic stress disorder, a diagnosis I received after being medically
discharged from the military in 2010. If the storyteller becomes angry
with the player’s suggestions, she changes her story to have the
domovoi beaten with a hammer. After the beating, the storyteller
goes forward in time to explain how this violence affects the domo-
voi, a personal tangent that implies the storyteller has experienced
trauma herself and is punishing her audience with the weight of its
emotional burden. There are nine of these paragraphs, presented
randomly to the player, each exploring a different facet of how
nightmares and re-traumatization have affected my personal mem-
ories of traumatic events.
If the storyteller is satisfied with the player’s suggestions, there’s no

beating, no trauma. The randomized elements of the text make the
narrative slippery and impossible for players to retain in their memories
as a static text, emphasizing the struggle I’ve undergone living with
memories that continually recontextualize themselves.

MEMORY BLOCKS
Memory Blocks is a Twine anthology produced by Priscilla Snow that
centers on the theme of memory cards and our relationship to those old
relics. My own contribution to the anthology is a story about the
fictional game Animal Town, inspired by Animal Crossing—more speci-
fically, the letters sent by villager NPCs in that series. The player reads
the static letters sent by the fictional owner of the Animal Town
memory card, then reads the procedurally generated letters that the
villagers send in response.
In the real series Animal Crossing, there are three types of response

letters: positive, negative, and confused. There’s very little procedural
text; the content of the letter is inspired by the personality type of the
NPC and a few conditional variables, such as: Did the player attach
a present to the letter? Animal Town, in contrast, uses some light
procedural generation to emphasize the uncanny nature of the NPC
letters, shown in Figure 9.3.
Procedural text, in this instance, reinforces the story’s themes about

the creative imagination players bring into their relationships with

Uncanny Text ■ 109

NPCs. The owner of the Animal Town memory card writes sincere,
personal letters to the villagers, who respond with randomized text that
barely acknowledges the deeply personal nature of the original letters.
The story uses that uncanniness to be funny, touching, and a little
melancholy.

MATUL REMRIT
Before I made games, I wrote multimedia fanfiction: Matul Remrit, a Let’s
Play that ran from 2010 to 2013 and creatively interprets a single play-
through of Dwarf Fortress. The text is written in a broken, stilted style that
imitates the game’s uncanny procedural text. The story is a collaboration

FIGURE 9.3 Letter generation in Animal Town.

110 ■ Procedural Storytelling in Game Design

between author and machine, a record of my player imagination that Dwarf
Fortress encourages with its highly detailed procedural systems.
All of my work with procedural text as a designer comes from fascina-

tions I developed while creating Matul Remrit. Although I have yet to
create or work on any games directly inspired by the complexity of Dwarf
Fortress’ systems, the experience of playing the game shaped my interest in
how procedural text can explode meaning. Matul Remrit was a playthrough
of Dwarf Fortress v0.31, a version in which a dwarf could throw a violent
tantrum in response to a series of sometimes minor irritations. Matul
Remrit took those factual events and ascribed narrative motivation to
them, a creative process that eliminated alternative interpretations of the
event and canonized a single one. Effectively, I have spent large amounts of
my writing career since then doing the exact opposite, using procedural text
to complicate or emphasize meaning in static narrative.

THE FUTURE
The more commercial contracts I pursue as a writer, the less I am able to
incorporate procedural text. Although I didn’t focus on tools because most
of the procedural generation I do is simple enough to be accomplished in
several, I want to stress how vital tools are to this process and how their
existence allows this blending of static and procedural text. My greatest
hope as a freelancer is that studios adopt dialogue tools that have options
for procedural text, like Ink and the Spirit Character Engine, that make it
much easier to pitch to a lead designer or editor. Voice-acting might be
incompatible with procedural text, but even fully voice-acted games have
tons of text lying around their environments—imagine writing a complex
generator for the hundreds of books in The Elder Scrolls series. These tools
allow these procedural moments to exist in practice.

Uncanny Text ■ 111

This page intentionally left blank

CHAP T ER 10

Dramatic Play in
The Sims

Daniel Kline

T here’s a particular form of play that everyone does that is still rare
in video games: dramatic play. You see it in LARPing, acting,

superhero action figures, and children at the playground. Adults and
kids saying “Let’s pretend we’re. …” We don’t even have a clear word
for this kind of play in game design. I call it dramatic gameplay. Role
playing in video games has taken on a broader meaning, more about
tactics and progression then pretending. Player storytelling is sometimes
used, but these players aren’t purposefully telling stories. They aren’t
watching or thinking about narrative. They are

• taking on a role,

• making that role personal,

• performing their role, or

• expecting the game to recognize the role.

The Sims is both one of the most successful video game series in history
and full of dramatic gameplay. It has sold over a hundred million games
and expansion packs, spread over two decades. Players of The Sims talk
about how they value their characters, about how interesting they are,
and how they love playing them. The Sims is a great example of these
4 fundamentals of dramatic gameplay at work.

113

The first fundamental of dramatic gameplay is players take on a role.
All dramatic play is acting, pretending to be another in the moment. It
is make believe. It is empathy, in play form. Players are motivated to
play their characters out, to see where they go and who they become.
They often deliberately suppress knowledge, abilities, or personal desires,
in seeking to play the role. Mastery is expressed, not through traditional
challenge and skill tests, but through perfect impersonation. The obstacle
is the role and its nature, not the game systems. These roles can be
complex, even abstract. In The Sims, the role(s) is the active household,
the Sims themselves. Sims are the center of Live mode and CAS mode.
Players unconsciously identify with each Sim in the household, switching
between 1st and 3rd person language. Players even adopt different roles
for each Sim they control. And their play matters. If the player does
nothing, the Sims won’t survive. The Sim needs the player.
The second fundamental is making the role personal. It needs to be

special to the player. It needs to be hers, by active choice. This is
typically done by clearly contrasting elements of the role with other
choices, along multiple axes. In The Sims, this is looks, clothes, traits,
skills, careers, relationships, and more—the nouns the role is described
with and represented by.
The third fundamental is the player needs to be able to perform the

role. The player needs to be able to express the part, via its verbs. And
this acting needs to feel free and deliberate, not preset by game
limitations. Design-wise, this means an explosion of available choices,
some of which are clearly not appropriate to the current role or
situation. In The Sims, the pie menu provides this. Often, the mechan-
ical differences between pie menu interactions are not significant. But
each carries a different flavor that lets the player express their role.
The last fundamental is the game needs to recognize the role.

Dramatic players are trying to inhabit the game world and feel fulfilled
when the game responds as expected. This reinforcement is a reward in
a classic design sense and encourages further play. In The Sims, this
recognition can come in a host of ways: the pie menu choices available,
the outcomes of each one, the target’s response, the world’s response,
the resulting changes to the next pie menu, and the long term impact
on the Sim itself.
Let’s examine some key ways The Sims caters to dramatic play.

114 ■ Procedural Storytelling in Game Design

FIGURE 10.1 The Sims 4: City Living (2016). Courtesy of Electronic Arts.

DESIGN EXAMPLES IN THE SIMS

1. Go Broad

The Sims 4 is a large, sprawling, crufty game. It ships game-expanding
expansions multiple times a year, and players eat it up. It runs counter
to every design theory about elegance, strategic choices, and accessible
controls, but it works. Why? Because each expansion delivers more
dramatic gameplay (Figure 10.1).
Sims 4: Cats & Dogs adds more roles to the game—“Be a pet lover!” It adds

a new axis of personality for Sims. It lets you personalize your pet’s looks,
traits, behaviors, skills, costumes, andmore. It adds tons of choices—“Do you
take care of your pets? Socialize with them? Do they sleep with you?”—and
the pet is always on screen, following you around, reminding you of this.
Sims 4: Get to Work has new careers that let you play through the work day
and a business you could run to sell most anything in the game. Sell
Photographs? Paintings? Your writing? All different roles to try. Sims 4:
Parenthood adds tons of detail to parenting, fleshing out a popular role and
adding new roles and behaviors for children. Sims 4: Jungle Adventure lets
you vacation in a fictional South American jungle and play archaeologist,
cultural anthropologist, or tomb raider. Sims 4: Vampires doesn’t just give

Dramatic Play in The Sims ■ 115

you vampires and vampire hunters, it gives you a whole new personalization
axis for existing characters to layer on top. In the 4 years post-launch, The
Sims 4 has shipped 22 additional packs.
All of this can seem like clutter. When you own 10 expansion packs it

can be overwhelming. But to dramatic game players, this is catnip. It
hits exactly what they are looking for. And it compounds, each new axis
building on the last. While not every role appeals to every player, the
ones they enjoy keep them excited and engaged for years, despite not
being classically “skill testing” or “content deep.” Narrow, deep design is
great for other game experiences, but dramatic games need a large
critical mass of choices. Dramatic games want to be large and inelegant
and full of orthogonal-ish stuff, to create roles that feel unique and
personal and expressive, and to play these roles in new circumstances.

2. Fail Forward

Dramatic gameplay needs interesting results to reward role playing.
When role playing, players choose to play sub-optimally. Unlike in
most games, a character failing is not the same as the player failing.
The player may actually be demonstrating role mastery! Thus, it’s
important that failing is fun and that characters “fail forward.”
If player choices don’t change the world, failure becomes a form of

“save and reload” or “try, try again.” This causes players to lose their
sense of performance, stop role playing, and start grinding out tasks
with predictable outcomes. Instead, when the character fails, change the
world state. Failing forward in The Sims can be a cooking fire,
a facepalm worthy faux pas, or an embarrassing office mistake. This
actually becomes a further expression of the role’s identity. “I tried
cooking. I suck at cooking. I started a fire and ran out of the house
screaming.” Each failure builds up the character in the player’s head.
Not every choice needs to lead to significant changes. Some “try

again, maybe it’ll work next time” is ok. But at least 20% or more
should fail forward. It creates a sense that every choice can change the
future. It’s a key component of recognizing role play.
Another way of recognizing a role is having super successes, showing

off a particular talent for a role, with outputs that improve or change
future options. For example, professional Sim chefs can super-succeed
at cooking, creating masterpieces. However, super successes are not

116 ■ Procedural Storytelling in Game Design

usually as impactful as failing forward; “getting a bonus” is less inter-
esting than something disruptive.
In The Sims, death is a common example of failing forward. Your other

Sims mourn for several days, changing the nature of every future choice.
They also meet Grim, a popular Sims character, and can plead for the dead
Sim to be restored using different Sim skills. But even routine skill usages
and socials have a chance to change your options. Cooking can burn your
house down, but it can also use up your free hour or ruin dinner. Failing
a social lets you apologize, get embarrassed, or get angry and start a fight.
While there are times you can try again, The Sims 4 uses different outcomes
to create a mystique of “Never assume things will work the same way twice.”

3. Story Surprises

The simulation in The Sims 4 provides lots of surprises, via both
interaction outcomes and simulated NPC behavior. One favorite is
“A hot guy randomly walks up to your Sim—what do you do?” Players
immediately know how they want to respond. There are a dozen possible
ways, all personal to different roles. They might flirt, slap him, say they
aren’t interested, or apologize to a jealous wife. But players are playing
their role and instinctively know what they want to do (Figure 10.2).

FIGURE 10.2 The Sims 4: City Living (2016). Courtesy of Electronic Arts.

Dramatic Play in The Sims ■ 117

These kinds of surprise scene or outcomes have powerful effects:

• They create a strong call to action, followed by strong emotions
and memorable moments.

• They differentiate Sims. “But then” conflicts expose the hearts of
characters, similar to a moral quandary.

• They push players out of ruts. They also make roles richer
through multiple plays.

• They expose players to what’s possible. One of the major chal-
lenges with dramatic play is ramping players in. The hot guy
teaches you “Hey, I could be doing romantic things. I could date
and get married, and maybe even have kids.”

• They keep players watching. “What’s going to happen next?” The
mystery keeps players engaged.

4. Things to Watch

Watching, in dramatic play, is a big deal. Watching slows everything
down. It disengages the twitch-action mindset and opens up creative
thinking. This gives players time to reflect and find significance in their
routine actions. A strong indicator of dramatic gameplay is that players
are zoomed in and watch their characters. When players focus away
from characters, take a lot of actions, or speed up time, they start to
disengage from the role playing process.
The Sims 4 encourage players to stay and watch interactions with

• expressive and fun animations,

• speech and thought balloons over the Sim’s heads when they talk, and

• surprises and variable outcomes (as previously explained)

5. Reactions

Like in any game, clear reward feedback is important. But in dramatic
games, these rewards take unusual forms. Players want positive feedback
from the world and other characters that they are playing their role

118 ■ Procedural Storytelling in Game Design

well. It’s key that NPCs respond appropriately to the player’s role. Over
time, the world can gradually become a reflection of the player’s
character and the character’s actions. New choices should appear that
reflect the character’s role, world state, and recent actions.
The Sims 4 gives special attention to NPC reactions during interac-

tions. The game plays 1, 2, or even 3 extra back-and-forth responses for
key interactions, such as a parent scolding a toddler, even though it
blocks the player’s next action. Sims standing nearby will also react to
major interactions (Figure 10.3).
The Sims 4 does more to reflect the role. It gives players interactive

objects to place in the world, so they can visibly see characters’ styles,
skills, and interests. Sims have different emotions, giving them new role-
appropriate interactions. When players idle, Sims autonomously go off
and try to represent their roles. The Sims exaggerates all of this for effect
and makes it clear that the game is responding to the player and that
the player’s dramatic choices are effective.

6. Characters and Traits

Dramatic players want roles that feel unique and personal. The Sims 4
uses systems like traits and aspirations to achieve this. But The Sims

FIGURE 10.3 The Sims 4: Get Together (2015). Courtesy of Electronic Arts.

Dramatic Play in The Sims ■ 119

uses traits for 3 different purposes: NPCs, Player identities, and Dra-
matic gameplay. Each has different requirements:

• NPC traits emphasize social interactions or common NPC beha-
viors. If players can’t see NPC traits or interact with them, then
they effectively don’t exist. NPC traits get bonus points if they are
easy for players to push against and set up surprises or conflict.
Evil is the classic example of a good NPC trait.

• Player identities are ways of defining a role that engages
players at character creation. For example, the Cheerful, Music
Lover, or Romantic traits in The Sims 4 fulfill common player
fantasies. They are role signposts for dramatic players, pointing
them in a direction. Aspirations in Create-a-Sim also serve this
function. They frame the role question as “What does this Sim
want to be?” Player identity systems sometimes have no feed-
back during the game. That’s ok. Their job is to inspire the
initial role.

• Dramatic gameplay traits express the character during play. They
want roles to feel distinct from each other, from moment to
moment. In The Sims 4, for example, Bro is visible in the pie
menu whenever you socialize. Lazy feels relevant every time your
Sim naps or sleeps. Loves Outdoors is happy whenever outside.
These are important both because they create gameplay variation
and because they remind you the Sims are unique and special,
each playing its own role.

Ideally, your Player Identity traits also are good NPC traits and have
strong Dramatic Gameplay, but it’s not required. In fact, it can become
counterproductive if it restricts your content. It’s far more important to
enable as many roles as possible than it is to make an elegant stream-
lined trait system.
Notably, traits in dramatic play need not be orthogonal. Orthogonal

traits are sometimes useful for dramatic gameplay needs, where oppo-
sites define strong archetypes, but they are less applicable for the NPC
and Player Identity needs. In dramatic play, traits are powerful tools
that should meet their purpose with as much personality as possible.

120 ■ Procedural Storytelling in Game Design

The most critical part of trait design is communicating what a trait is
doing. Otherwise, players forget they exist. To show when a choice is
available due to a trait, The Sims 4 puts trait icons on pie menu buttons.
If the choice is changed due to a trait, The Sims 4 adds a tooltip to
explain the change. Traits also give random buffs with tooltips. These
techniques don’t work for NPC traits or autonomous PC behavior,
unfortunately. Whenever you’re designing a trait system, think about
how players will know that they are changing the game, in all the cases
where traits are supposed to make characters feel distinct.

7. Realistic Fantasies

A major aid to adopting a role is using known, relatable, desirable
archetypes. If players already know and dream about a role, taking it on
is an instant hook. Using a realistic setting makes this connection even
clearer.
Realistic settings also lend themselves to unusual or very personal

roles outside the designer’s original intent. (See Alice and Kev in Sims 3,
for example.) Personal is very hard to design, but modern life is very
familiar and personal by its nature. Fantasy worlds tend toward jargon

FIGURE 10.4 The Sims 4: Cats & Dogs (2017). Courtesy of Electronic Arts.

Dramatic Play in The Sims ■ 121

and made-up history that’s much harder for players to relate to. The
Sims 4 is one of the few games that go all in on simulating modern life.
Picking a Western suburban life familiar to its primary audience makes
roles more accessible (Figure 10.4).

8. Transgressive Play

Dramatic play is more powerful when you can take on taboo and
forbidden roles. It’s an instant hook, particularly for young adults
exploring their own identity. It’s thrilling and can lead to guilty
tittering and shy pleasure. It attracts players looking for something
new and smoothly ramps players into a role. Breaking traditional
roles gives players a taste of freedom and makes the role that much
more personal. It plays directly into the core strengths and appeal of
dramatic play.
The Sims has an extremely wide range of roles that are new or taboo,

possibly LGBTQ relationships, transgender characters, and interracial
romance or fantastical roles like vampires and witches. Even simple
roles can be transgressive. Consider “pet owner” in which kids can
explore owning the pet their parents have forbidden or “young mother
having a baby” for teenage girls who are thinking about sex and
pregnancy for the first time. Playing these roles can be extremely
powerful and compelling, giving players a perspective, an outlet and
a voice they often can’t find in their own lives. When designing roles for
your game, are there real life issues that players might want to explore?

9. Low Challenge

It’s important in dramatic play that failure not be punishing. To perform
a role, players need to feel empowered, creative, and free to try things. If
random failures are heavily punished or success is gated by difficult skills,
then players will cease role playing. This is not to say that dramatic play
(or The Sims) has no mastery. Instead, the mastery is in performing the
role expertly and knowing the game well. This can be just as rewarding as
executing a difficult combo or beating a difficult boss, if designed well.
In dramatic play, one side effect of low challenge is that traditional

game balance is not critical. Instead, everything should be designed to
be freely rewarding, to enable you to play out the role. You should get
rich becoming a businessman, if that’s your role. Now you can explore

122 ■ Procedural Storytelling in Game Design

the “rich person” role. Worst case, you can veer into another role. (New
roles can be designed to be readily accessible, mid-play.) Note that The
Sims 4 has deep content that requires hours of play to unlock. But it is
more a traditional progression—a reflection of investment and recogni-
tion of a role—than a reward for skill mastery or a tightly balanced
pacing/unlock mechanism.

10. Player Commitments

Performing a role can be overwhelming. One trick to encourage players
is giving them clear goals, like quests. Have the game make suggestions,
and ask players to choose one and commit to it. Early on, these goals
can be simple and instructional. Once players are experts, the goals
can be more open-ended and long term. In a dramatic game, these
goals should be extensions of players’ current roles or opportunities to
take their roles in a new direction. Completing the goal then becomes
an opportunity for the game to respond to players’ role playing and
reward them.
The Sims has explored player commitments in multiple ways. Wishes

and Promises in The Sims 3 are a great example of this. Players had 4
wishes to “promise.” Wishes were chosen from a large pool based on
a Sim’s recent actions, and they got deeper and deeper over time. Sims
also had a lifetime wish, an ultimate “I win” goal that players choose for
their Sims to strive for. The list of possible lifetime wishes is based on
the Sims’ traits, again reinforcing the players’ roles.

11. Dramatic Currency

Games love to give out currency rewards, right? This works in dramatic
games, too. Games can give out dramatic currency as a reward for
performing a role, almost like points. These points can be attached to
the player, but there’s extra reinforcing power in attaching them to the
role. Often, these points can be spent on internal, abstract things for
growing the role or ways to control over the world (and set up the role
for success).
Completing a promise in The Sims 3 gives a Sim lifetime satisfaction

points. These points can be used to buy “cheat-y” traits or objects that
make the Sim feel powerful and successful or help future Sims play
faster.

Dramatic Play in The Sims ■ 123

12. Abstraction and Humor

Dramatic play supports abstraction very well. Players are very forgiving
of a game taking unrealistic shortcuts, as long as they can express their
roles. The Sims titles have always had a sly whimsy that takes advantage
of this. Sims come back to life, spin around to change clothes, teleport
to their destination, make friends in a few hours, carry unrealistic loads,
do magic, mind control other Sims, fight inside cartoon smoke clouds,
and “Woohoo.” Sims personalities are determined via traits, and their
relationships by a green bar. The Sims is full of unrealistic abstractions.
Players have expectations of being able to perform their roles, but
performance is distinct from real life. As long as players can follow
through on their roles and the world reacts, games can shortcut and
abstract a lot of things. These shortcuts are often funny, and leaning
into that helps players go along with them.

DRAMATIC DESIGN PATTERNS IN OTHER GAMES
These are some examples of how The Sims supports and encourages
dramatic play. Stardew Valley, Middle Earth: Shadow of Mordor, Rim-
World, Mass Effect, Sim City, and Dwarf Fortress are all games in other
genres to research. Skyrim is particularly noteworthy, as a mainstream
AAA game that’s met with significant success with dramatic players.
It’s important to note that dramatic play is not all or nothing. Games

can support multiple types of players. So don’t be afraid to do a few
low-hanging designs for dramatic players, even if they aren’t your core
audience. Dramatic play is a natural fit for RPGs, simulations, and
multiplayer games. It can be a good mini-game, a nice break from an
action sequence, or make a narrative game’s characters seem more
human. Consider the celebrated scene in Uncharted 2, where mid-
game the player explores a quiet Tibetan village.
Some common design techniques are anti-patterns to dramatic play

and require care. Recall the 4 components of dramatic play and then
consider

• narrative and cut scenes: The authorial voice puts players in
a passive mode and often stops the player from personalizing
and performing the role.

124 ■ Procedural Storytelling in Game Design

• difficult controls, high challenge, fast pace, or significant learning
curves: These engage the optimization brain, creating intense
emotions and occupying all of the player’s attention, blocking
the player from performing.

• fixed Characters: Avatar verbs are often heavily prescribed, with
little player flexibility. A preset character can be ok—the players
are opting in when they buy the game, after all. But during play,
the dramatic players want to personalize and perform their roles
in some way, beyond looks. The player’s choices about who they
are and how they express themselves need range, or dramatic play
morphs into follow-the-breadcrumbs linear play.

Pen and paper role-playing games with Game Masters are often held up
as the next step for emergent storytelling in video games. But this
misunderstands a core reason this kind of pen and paper role-playing
is fun. Indie games like Fiasco have no Game Masters. Others, like
Blades in the Dark, put Game Masters in the backseat. It’s not about the
Game Master. It’s about playing to explore a role, playing to see what
happens to that role. The Sims does this and has found a passionate fan
base eager for more.
Dramatic play is part of our nature. Every child does it. It’s funda-

mental to how we learn and grow. It’s part of what makes us human.
The Sims is on the tip of a deep iceberg. There’s so much more that can
be done. How can you use dramatic play in your next game?

Dramatic Play in The Sims ■ 125

This page intentionally left blank

CHAP T ER 11

Memorable Stories from
Simple Rules in Curious
Expedition

Riad Djemili
Maschinen-Mensch

The Curious Expedition features hundreds of story fragments that are
procedurally combined. In this article, I will give an overview of how
a simple ruleset can create personal and memorable storylines.
In the year 2014, after leaving the AAA industry, Johannes Kristmann

and I founded the indie company Maschinen-Mensch in Berlin. In our
debut title The Curious Expedition (CE) you gather party members and
supplies for your trek and travel to explore the last remaining uncharted
regions of the Victorian Era. We tell stories of triumph and of failure, of
hubris, exploitation, and death. To achieve the sense of exploring the
ever unknown, procedural world- and story-generation felt like not just
an option but also a necessity for the game.
The main gameplay of CE consists of a round-based strategy

mechanic, where you plan your travel route on a map that you slowly
uncover (Figure 11.1). Selecting the best path requires you to consider
traversability, dangerousness, equipment, team morale, and other fac-
tors. Each small tile represents a full day’s travel, and legs can easily
involve weeks of traversing the Perlin-generated terrain. Our goal was
to feature traveling as the core gameplay, instead of the map being just
a beautiful level selection screen.

127

During your travels, we document noteworthy events using a procedural
text diary screen that features a close-up of your trek and the surroundings
as background art. In these diary scenes, you select from multiple-choice
actions, usually aiming to find compromises among scarce resources, tense
character dynamics, and questionable morals.

THREE LEVELS OF ABSTRACTION
An example of an event that might occur is that one night while setting
up your camp, a trek member with the superstitious trait notices
a vulture circling above the camp. They ask you to shoot down the vulture
(Figure 11.2). As with any interesting decision, there is no obvious answer.
Shooting down the vulture will consume valuable ammunition. Ignoring the
plea will lower the loyalty of the person toward you.
For this event to appear, various procedural systems are layered on

top of each other: world layer, event layer, and sentence layer.

World Layer

The diary screen can be deliberately triggered by either interacting with
points of interest or automatically through catastrophic events. Points of
interest include villages, missions, shrines, pyramids, travel merchants,

FIGURE 11.1

128 ■ Procedural Storytelling in Game Design

forsaken camp sites, and similar places. Catastrophic events that are checked
on each turn often involve individual character ailments, like a wound
becoming infected or suffering from sickness. Most importantly, an event is
also forced when running out of the main resource of your trek: sanity.
Some of these catastrophic events stop the trek movement immedi-

ately; others are delayed until the trek arrives at its target destination to
reduce potential player confusion caused by an interruption. Based on
this general gameplay context, we know when to show the diary and
which input event to use to calculate the page content.

Event Layer

CE uses a declarative text syntax to describe all events. A simple event
might consist of nothing more than an ID, a text, and some basic effect.

{
id: evt-basic-example
sanity: +20
text: I suddenly felt better.
}

FIGURE 11.2 “This event is inspired by a real-life diary entry of Isabel Burton
from 1897 while she was in Syria.”

Stories from Simple Rules in Curious Expedition ■ 129

Events might reference other events and specify which and how many
should be processed. The text and effect of each processed event is
added to the same diary page. In the night camp example above, the
diary was instructed to run the evt-nightRest-sanityLow event. That
event contains an introductory text line (“I told the trek to unpack and
allowed everyone to rest”) and a list referencing over 50 other events.
This list could be imagined as a cookbook, since each event specifies all
the ingredients it needs the game to fulfill, like a recipe.
Here’s an abbreviated version of that event, containing a requirement

and three referenced events, from which one of the events that fulfills its
requirements is randomly selected and processed:

{
id: evt-nightRest-sanityLow
reqSanity: 20..50
text: I laid down, but then...
select: [evt-vulture, evt-fight, evt-calmNight]
}

The most interesting events are those that take into account indivi-
dual members of the party. The following example uses the charEffects
keyword to specify a sub-event that is checked for each trek member
individually and considered valid if at least count members pass the
specified requirements. In this case, we’re looking for two characters,
who will get into an argument:

{
id: evt-sanity-fight
charEffects: {

count: 2
reqCharFlags: +humanoid -special
text: A discussion between $name grew into a argument
actions: {

actionText: Arrest $name
text: We tried to arrest $name but $he fled the
scene.
removeCharacter: true
}

}
}

130 ■ Procedural Storytelling in Game Design

Let’s assume the system found two characters by the names of
“Richard Wellington” and “Akulta.” The text of this event features
a special $name keyword, which is replaced by the names of all the
matched trek members, resulting in: “A discussion between Richard
Wellington and Akulta grew into an argument.” The diary will also
show two action buttons named “Arrest Richard Wellington” and
“Arrest Akulta.”
These systems allow us to portray events featuring various require-

ments and effects that are able to reference other events for increased
modularization and variation.

Sentence Layer

Another layer of variation can now be applied at the sentence level. The
texts declared by events also support word randomization. This text will
randomly choose to show only one of the text variations in the square
parentheses:

“[He|She] suggested that we should set up camp here. I [hated|
agreed with] the idea. We would stay here [for now|until I felt like
moving on again].”

Initially, our written text featured a large amount of synonyms, but we
realized that synonyms create a big burden on localization without
making events more interesting. Much more memorable are tonal and
even contradictory variations that manage to fit into the general sentence
meaning. In the example above, the sentence needs to communicate that
the trek is setting up a camp point. Within this context, we’re free to play
around with the idea of the explorer being glad or angry about that
decision as long as we don’t negate the goal of the sentence.

SAME EVENT, DIFFERENT INTERPRETATIONS
We established three layers of abstraction that are used to build each
diary page. With this simple ruleset, we’re able to construct a fascinating
amount of varied story telling. Let’s take a look at one of my favorite
diary events: One of your trek members approaches you after a nice
evening of resting in one of the indigenous villages. They have fallen in

Stories from Simple Rules in Curious Expedition ■ 131

love with a villager and wants to leave the expedition to stay with the
village.
When players approach me at events and retell specific memorable

moments, this is one that they will mention more often. Here are
several real world variations that players have told me about this
episode:

• a British soldier falling in love with a woman from the tribe

• a bearded sailor falling in love with a man of the tribe

• a missionary falling in love with a woman of the tribe.

Through applying the same event to different characters and applying
different word variations (including different gender pronouns), we’ve
created three scenes that hit different tones and even touch on different
potential taboos. To the people that retold me these stories, they felt
funny or touching or even personal.

Apples in NetHack

The reason these generated stories are able to feel relevant instead of
seeming like techy text randomization exercises reminds me of how
apples work in NetHack. First released in 1987, NetHack is a classic
roguelike with a tremendous amount of complex systems that work
together to create emergent gameplay.
In most roleplaying games you can consume food, but in

NetHack you can choke and die from eating food. The first time
I heard that apples had killed hundreds of players, my mind ran
wild with the thought of how complex this and other systems
would have to be, if even your dining experience was simulated to
this detail. Since NetHack is open source, I could just look up the
code in question:

If (food) {
You(“choke over your %s.”, foodword(food));
if (food->oclass == COIN_CLASS) {
killer = “a very rich meal”;
} else {

132 ■ Procedural Storytelling in Game Design

The relevant section was only a few lines of simple code and was
much less complex than I had anticipated. Little effort had been necessary
to trick me into assuming a highly elaborate simulation. Similar to how
I see the apples, players of CE don’t know exactly how deep the rabbit
hole of simulation goes. They are glad to fill up the gaps in the ruleset
with their own belief in the intricacy of the system. This becomes part of
the suspension of disbelief. As long as we provide enough consistency in
our procedural stories so as not to break this gift, players will be happy to
mentally cooperate in creating a believable world.

STORY ARCS
When we start joining together these individual events by linking cause
and effect, interesting character arcs emerge organically. Here is
a plausible sequence of events in CE:
We’re low on sanity and start eating coca leaves to deal with the

strain. Our cook Marie-Elise Alexandre has a psychotic episode and
develops a strong sense of superstition (gaining the superstitious trait
internally).
We set up the night camp, and Marie-Elise is bothered by a vulture

(if she had not had the superstition trait, the event would not have
appeared). We decline to waste scarce ammo and Marie-Elise loses
loyalty, resulting in her being marked as angry.
At a later night camp, Marie-Elise gets into a big argument with the

scout over a minor nuisance (her still being in an angry mood being the
requirement of this event). We decide to break up the fight and chastise
Marie-Elise, causing her to run off into the jungle alone. We decide not
to follow her.
Many days later, we’re out of resources and down on our luck, when

suddenly a regretful Marie-Elise steps out of the woods. She had been
following our tracks for days and asks to rejoin our trek. Thankfully she
also brings food. (The previous event had removed her from the trek
but stored her in a special pool of characters that we keep in the
background for further purposes.)
Each of these events was allowed to be triggered due to its requirements

being fulfilled. Each of these events caused an effect that potentially enabled
or disabled other events. At no point was a system dedicated to crafting

Stories from Simple Rules in Curious Expedition ■ 133

long-term storylines involved. Yet, by indirectly linking these individual
events through a shared vocabulary of interesting hooks, a consistent and
highly interactive storyline emerged.
Not all the storylines created this way will be memorable. This is

partly due to the nature of characters dying or leaving the trek and
partly due to our lack of forced control over the player. But when
a complex storyline evolves out of this series of events, at each point
highly influenceable by the player, we are rewarded with something
uniquely personal and memorable. In this way, procedural story gen-
eration can feel truly magical.

134 ■ Procedural Storytelling in Game Design

CHAP T ER 12

Amplifying Themes and
Emotions in Systems

Daniel Cook
Spry Fox

When I prototype, I keep a watch out for the emotions that arise
from playing even the simplest of the systems. Often early

prototypes involve simple shapes, abstract numbers, and little evidence
of what a typical player might consider plot or theming. Yet I regularly
notice myself becoming excited about a variable ticking upward or
crushed when I lose a resource. However, most players are not trained
to watch for the emotions that arise from play. They’ll experience broad
moments of joy and failure; particularly when they engage with an
abstract game, the subtler emotional signals can be quite weak and so
they are left feeling cold about the whole experience. Beyond a very
small segment of abstract thinkers, the emotional payload of the clever
gameplay systems falls flat.
We want to amplify those emotional undercurrents, tie them to rich

themes, and make a vibrant landscape of meaning and emotion visible
to a typical game player. When I think of “narrative” in my games,
I rarely think in terms of linear plotting of the sort found in static
media like books or movies. Instead I follow a two-step process. First,
what stimuli or feedback can we add to various interaction loops to
boost the emotions of play? Second, how can we use resonant real world
themes to convert raw emotions into a meaningful experience? We’ll
talk about applying these two steps in my game Triple Town as well as
some of the failures that resulted.

135

THE EMOTIONS OF COLONIALISM IN TRIPLE TOWN
In 2010, I designed a casual puzzle game called Triple Town. To play,
you drop objects onto a small grid, and if three of the same objects are
next to one another, they merge together to form a new higher level
object. Eventually the board turns into a cluttered space filled with
previously combined objects, and it takes clever planning to craft the
highest level of objects.
Triple Town is a very simple abstract game that produces deep

emergent gameplay that has engaged players for thousands of hours.
I regularly get messages from people who have been playing for
years, and the basic mechanic has reappeared in popular titles like
Threes or 2048.

Observing Emotions in the Prototype

Mechanics generate emotions. Stephane Bura outlined the basic process
in his seminal essay “Emotion Engineering in Videogames.”1 By putting
the player in states in which critical variables are either constrained or
move freely, we can trigger instinctual feelings of loss or plenty.

• Variables: The variables worth watching could be anything with
in-game value: time, territory, currency, items, you name it.

• Velocity of change: There’s a spectrum of emotional impact that
stems from the velocity at which these variables are changed.
A slow drain has a different emotional result than a sudden loss.

• Direction of change: The direction the variable changes also has
an impact. A strong gain feels very different from a strong loss.

• Predictability of change: Emotions are also impacted by pacing
and variability of change. A predictable steady decrease feels very
different from a rapid unpredictable fluctuation. Much of what
players do is sample the world and try to predict what is going to
happen next. Their emotional state is heavily derived from those
predictions.

As I played the early Triple Town prototypes, I was on the lookout for
various emotional signals. I’m not doing anything overly theoretical

136 ■ Procedural Storytelling in Game Design

here, just carefully observing my own emotional state as I play. Here’s
what I observed:

• Decisiveness: I’d make a plan for where I was going to combine
pieces. I have lots of clear information so I know I can make
a smart plan on how to advance in the game.

• Anticipation: I would wait for the right piece to appear in the
random draw so that I could complete my plan. The right piece is
a highly variable resource that I can’t completely predict.

• Tension: Uncombined pieces take up space, and when the space
runs out, you lose. The longer my plan went without getting the
right pieces, the more cluttered the board got and the more likely
it was that I would lose. In Bura’s terms, I was witnessing the
steady erosion of the critical territory variable and predicting my
imminent failure.

• Relief: When the piece arrived, dropping combined multiple
objects into one higher level object. This freed up space, and
I could start the whole process of planning all over again.

Now, the game as I’ve described it so far was a bit boring in
practice. Making plans and then waiting for random drops wasn’t
interesting enough. So we added a random moving element that
would arbitrarily block you from making certain moves. Originally
these were simple black squares that would randomly appear in
a square each turn. With their addition, a whole new set of
emotions arose.

• Frustration: When you got the perfect piece AND a blocker
appeared in exactly the space you needed to place it … players
would be irritated. This was a sudden reduction of a hitherto
reliable resource (a tactically meaningful empty space).

• Hostility: The blockers were moving entirely by random chance,
but even using this simple simulation players felt they were
intentionally being thwarted.

Amplifying Themes and Emotions in Systems ■ 137

• Defensiveness: Players started ascribing motivations to the black
squares and planning both desperate and diabolical counter plans
for triumphing over their opponent.

From a pacing perspective, the addition of the blockers added
a property of play that I love to see. Players would make plans, they
would encounter new information or context, and they would be forced
to revise their plans. However, smart players quickly learned that they
did much better if they thought about how to balance:

• Options planning: Making their long terms plans robust in the
face of variance.

• Opportunism: Staying alert to short-term opportunities.

Every move is a conscious tradeoff between the present and the future.
To use Sid Meier’s nomenclature, the density of interesting decisions
increased dramatically. This is not merely some cold logician’s complex-
ity. Encouraging the player to operate across multiple time spans also
provides emotional richness. Previously, a single emotional note arose
from each move. Now each move resulted in a complex layer of
emotions. I might feel bad about some random outcome but good that
my long-term plan still remained in play. I would play this incredibly
simple prototype for hours and feel deeply emotionally engaged.

IDENTIFYING A THEME
At this point in the prototyping, I was taken aback by the intensity of
player hatred for abstract black squares. I design games as much as
a means of personal expression and rumination as I do to create
a functional commercial product. Even when building abstract games,
I find it immensely useful to identify a human-centric theme to riff off
and explore. A theme suggests and inspires new variations on
a mechanic while giving players a familiar entrance into your game.
Many of my themes are derived from personal experiences, and this

was the case for Triple Town as well. I grew up in a rural area of Maine.
There was a river, a paper mill, and a reservation. My classmates were
the descendants of both English settlers who had arrived about 400

138 ■ Procedural Storytelling in Game Design

years ago and Native Americans who had lived in the area for far
longer. In school we read about the atrocities committed against the
local people. Yet, we lived together, played basketball together, dated,
and were close friends. There’s an obvious dissonance there, and
awareness of it grew perhaps too slowly over the years.
My first reaction was the dismay of walking through the summer

woods and realizing this was the site of a genocide. There’s a weight,
a sense of this immense rolling calamity stretching back hundreds of
years, the impact of which is clearly visible in the lives of the people
around me. But alongside the horror, I kept coming back to an
admittedly naive question: How? How could humans do such horrible
things to other humans?
In that abstract game prototype with upgrading objects and hated

black squares, I saw a hint of an explanation. In Triple Town, players
learn to hate a neutral entity entirely due to the natural pressures of
territory acquisition. I started to treat the prototype as a little petri dish
where I could experiment with the nuts and bolts deep in human
behavior. I wanted to understand, even if only a little. I didn’t know it
at the time, but this type of experimentation with systems has a long
history in social psychology and game theory.

• You break a system down into simple rule-based interactions of
agents.

• Each agent interaction has a cost and potential payoff.

• Each agent follows a strategy that tries to optimize the results.
People sometimes adapt their strategies to beat the strategies of
other agents. For example, in a game of Rock, Paper, Scissors, you
notice your opponent always plays paper. In turn, you adapt your
strategy and always play scissors.

• Given a certain set of rewards and economic tradeoffs, stable
patterns of agent strategies emerge that match up well to real-
world behavior.

Behaviors we might entirely ascribe to habit or history are shown to
have strong structural re-enforcers; they are more economic in nature

Amplifying Themes and Emotions in Systems ■ 139

than they are arbitrary. To use game design terminology, people behave
the way they do because the rules are set up to encourage certain
dominant or degenerate strategies. In the world of games, Nicky Case
in particular2 is doing wonderful (and far more informed) work using
these models to explore discrimination, competition, segregation, mob
rule, and other aspects of human behavior.
As I played with the numbers in my prototype, I explored an idea

that was new to the younger me: Colonization was a system of
exploitation and conquest based in such a zero-sum value structure in
which even the most innocent inevitably became marked as enemies
that must be destroyed or treated as resources.
This became the core real-world theme that I wanted my abstract

game to express to the player.

USING THEME TO AMPLIFY GAMEPLAY EMOTIONS
To understand how to tie a high level theme like this into the emotional
output of a mechanical system, we needed to dig into how emotions
work. Emotions occur on at least three levels.

1. Body: There is an initial physiological response when your body
processes an experience: fight or flight or tend and befriend are
examples of raw, instinctual body responses where adrenaline or
oxytocin spikes. These are usually instinctual animal level priming
that ready the body for potential action.

2. Mind: There’s a labeling activity in which you consider the
context of the situation and retrieve memories of similar
situations.

3. Feedback Loop: Finally, these two earlier steps are combined to
moderate or intensify the initial response. A person tackling
a friend might yield a spike in heartrate preparing for action. But
if you realize this is a friend being playful, that action might
instead turn into delighted laughter. For more information see
the two-factor theory of emotion for examples of how contextual
labels can transform a base physiological response into a myriad
of subtle emotions.

140 ■ Procedural Storytelling in Game Design

Much of the emotion I was observing in my initial abstract prototype
can be attributed to body-level reactions, but players are also primed to
look for mental labels. As a player becomes acclimated to the systems of
loss and gain within a game, they engage in a brief moment of subcon-
scious introspection: Was there something else they’ve experienced that
this new experience resembles? It is your job as a designer to provide
stimuli that suggest the labels you want experienced (Figure 12.1.)
In Triple Town, we applied the following labels to the abstract

gameplay:

• Territory: The playing grid became a small island with limited
space. This introduced the ideas of filling up a territory.

• Buildings: Upgradeable objects became forests, buildings, and
mansions. This emphasized the idea of building, expansion, and
growth so common to colonization.

FIGURE 12.1 Theming the score screen with references to colonialism.

Amplifying Themes and Emotions in Systems ■ 141

• The Empire: Score became progress toward the expansion of
a fictional empire.

• Bears: Black squares became peaceful giant bears. I could have
gone with an explicit victim of colonization, but that would have
immediately triggered whatever pre-existing schema players had on
the topic. It would bypass any introspection about systems and jump
to a rigid narrative. I instead wanted something slightly more
neutral, or the thought experiment would be less valid. Some folks
do hesitate to kill the bears, but there’s a long history of using explicit
dehumanization (i.e., they aren’t humans; they are animals) to
reduce moral inhibitions; it seemed like an appropriate obfuscation.

• Military: Removing a black square became using a military
weapon to eliminate a bear.

The theme also inspired mechanical changes.

• Migration: The common bear stopped teleporting and then
moved from square to square as if going about its business.

• Reservations: This predictable movement enabled players to trap
bears in an area by surrounding them by trees or other buildings.
They could herd bears away from where they were building. This
emergent strategy mimicked the tactics of colonizers in moving
natives out of developed territories into smaller and smaller
reservation-like structures.

• Churches: If too many bears were packed into an areas, they died
off and turned into grave stones. However, matching gravestones
built churches, thus offering the historical balm of religion for any
angst of mass murder. The metaphor of investing in a religion
literally built out of the bones of the locals felt a little on the nose,
but very few players noticed.

TRIPLE TOWN AS A NARRATIVE FAILURE
Now, from a narrative perspective, Triple Town was a failure on many
levels. Here’s how I’d rate my efforts.

142 ■ Procedural Storytelling in Game Design

• Success at personal growth: As the designer, I feel I benefited
from my exploration into the systems of colonization. I learned
some deep lessons about how systems balance shapes what we
think of as player morality. As mere selfish art, narrowly focused
on personal growth and understanding, the game did well.

• Failures of communication: Very few players ended up grappling
with the problems of colonization in the process of playing the
game. If Triple Town is viewed as an interactive media trying to
convey a message or express a rhetorical stance, it mostly failed to
connect.

• Failures of taste: Of the players that did notice the theme of
colonialism, many were merely offended. The raising of such
a serious topic in a casual, cartoony game was considered distasteful.

FAILURES OF COMMUNICATION
My first failure can be viewed as poorly executing the craft of commu-
nication. In pragmatic (a.k.a. not art) communication theory, there is
the author, the message and the audience. The miserable default state of
a typical communication attempt is that a naive author’s poorly crafted
message fails to reach the audience. Communication should be seen as
inherently hard, plagued by a huge range of issues ranging from noise
in the communication channel to the listener’s inattention, limited
comprehension, and personal history. It therefore becomes the author’s
essential responsibility to 1. comprehend the communication con-
straints and 2. craft the clearest, most effective message possible.
From this perspective, many of the signals I sent were confusing to

the player.

• Cute: The cuteness of the bears made many players think that the
game couldn’t possibly be dealing with serious issues. Cute is
coded by Western society as either infantile or a safe and pure
aspect of culture. There’s a reasonable dash of sexism in this
coding as well. My hope had been that the dissonance between
cute and horrific would cause players to interrogate their actions.
Instead, they reacted as is common when people face cognitive

Amplifying Themes and Emotions in Systems ■ 143

dissonance. They doubled down on their current biases and
filtered out the dissonance.

• Casual: Triple Town is commonly grouped into the casual match-3
genre. When Triple Town came out, the vast majority of such games
were either highly abstract or shallowly themed. Bejeweled, the most
popular of match-3 titles at that time, involved matching gems for no
apparent reason. With no cultural practice of serious discussion in
a particular activity, players felt little reason to look for one. Or more
pithily, your audience looks for wolves in a forest, not in a mall.

• Subtle references: Most players missed the colonization refer-
ences that were there. On first read the game was about matching
buildings to make bigger buildings. Oh, and there were some bears.
You can think of theming in terms of First Read: what signals people
immediately notice. And Second Read: what they see when looking
a bit more deeply. All the little labels that I carefully played through-
out the game were subtle Second Read elements.

A brief note on sexism in games: Both Cute and Casual games are often
coded as activities for women. These same categories of game are
labeled with a vast array of negative terms by consumers and reviewers
of male-coded games. Often they are called “mindless” or “time wasters”
and their players are treated as low agency “addicted” robots who are
“manipulated” (by male developers) into playing. Journalists and critics
write far less about such games, and when they do they almost never
treat them as serious intellectual works. I cannot help but see this in the
broader context of female-coded activities being historically treated as
“less” than male-coded activities.
As of 2018, a popular game about men shooting other men in the

head still is more likely to be treated as a thoughtful work of art than
almost any game played predominantly by women. This is an interest-
ing challenge worth trying to overcome.

FAILURES OF TASTE
It is one thing to ask if a message is well crafted, but an equally
important question is if a message was even worth sending. Messages

144 ■ Procedural Storytelling in Game Design

have power; they can sway opinion, inform, or misinform. They can be
used as propaganda for the powerful or weapons that harm the vulner-
able. These games with their systemic and narrative payloads are not
neutral nothings. Whether we like it or not, they impact players. In
addition to our duty to communicate well, we have an additional duty
to communicate ideas that do good work in society.
There were two perceived failures of taste in Triple Town:

• Enforced limits on a low art: Considering systems of coloniza-
tion in a cute commercial game treats a serious subject with
a casualness that is unbefitting. This raises broader questions of
whether highly commercial games with broad appeal are cultu-
rally allowed to tackle more complex social issues without being
seen as merely crass.

• Accidental reinforcement of negative norms: A critique with
more bite [https://veganithaca.wordpress.com/2013/07/25/oppres
sion-in-games-what-are-we-learning/] is that the game may have
caused harm by being yet another game about the unspoken yet
dominant value structure of the colonizers. Specifically, there is an
opportunity for harm when unthinking players engage with an
“innocent game,” have a pleasurable experience, and so end up
being more supportive of the practices, values, and philosophies
of colonization.

It is worth noting that Triple Town is not an “innocent game.”3 The
systems and their theming were quite intentional, and to discuss it in
the same bucket as other games that accidently support colonization is
a poor reading of the game.
However, even intentionally crafted games can end up having an

impact that is the opposite of their intention. It is entirely possible,
especially with the previously discussed ambiguous theming, that Triple
Town reinforces standard expectations about a difficult topic. I talk to
players regularly and ask them about their experience. What did they
get out of the game? Some understand; some do not; some bring entirely
new perspectives to the work. I take notes and think about how I might
do better.

Amplifying Themes and Emotions in Systems ■ 145

https://veganithaca.wordpress.com/
https://veganithaca.wordpress.com/

CLOSING THOUGHTS
It has been many years since I designed Triple Town, and like all my
games, it was a learning process.

The Importance of Practice

My first lesson is that the two-step process of looking for emotions
and applying resonant themes benefits from practice. Often we’ll read
an essay like this, admire the clearly labeled bullet points and think
“Oh, if I just execute this rote pattern, I’ll get the clear results
described here!”
Sadly, no. The path to mastery involves laboriously applying the

process across multiple games and getting a little better at it each time.

• In the puzzle roguelike Road Not Taken, I tackled the life of
someone in a traditional society who is forced to give up on
having children.

• In Leap Day, we played with how differentiated means of produc-
tion yield tight micro-communities of cooperation.

• In the multiplayer village sim Beartopia, I explored persistent
communities where immigrant strangers slowly become close
friends.

Each of these projects was a year or two of labor, and they are all deeply
flawed. I repeated some of the same mistakes that I made in Triple
Town, especially by stubbornly banging my head against regrettable
player expectations around cuteness. And I made new mistakes like the
high cognitive load core mechanic of Leap Day or the unfortunate
distribution plans for Beartopia.
At the same time, I see clear personal progress. When I talk to players of

my newer games, they tell me of rich emotional experiences similar to the
ones I, the author, was attempting to amplify. They also tell me how the
games made them reflect upon their own lives and consider how they
might change for the better. These incremental steps are enough to
encourage me to keep trying.

146 ■ Procedural Storytelling in Game Design

An Uneducated Audience

My second lesson is that the majority of game players do not have the
habit of deeply reading into the subtext of the systems they engage with.
So I often need to be far blunter with game players than I might desire.
They need complex themes explicitly spelled out in order to overcome
a limited level of systems literacy.
I’m at peace with this. Educating a large audience on new, complex

forms of culture is a generational task. It is performed by a thousand
authors across hundreds of meaningful works. My job is to help players
understand, even just a little, that games can hold meaning. Have faith
that there will be other designers who will be there to help with this
grand effort.

Ongoing Conversations

My third lesson is that communication is an iterative effort. A game is
not a static missive sent into the void. Instead, it is part of an ongoing,
evolving communication. You start by sending a message, and then you
listen. How did the audience respond? What did it hear? How did it
react? Then you clarify or adjust your message in order to increase
everyone’s understanding. I’ve built Triple Town at least four times at
this point, not including the initial prototyping. There was an e-Ink
Kindle release, one for Facebook, one for Steam, and one for mobile.
Each time I adjust what it says based on what I’ve heard. Each time the
message becomes a little clearer.
At some point there will be another riff on the systemic narrative of

Triple Town. Maybe I’ll do a better job.

NOTES

1 www.stephanebura.com/emotion/
2 http://ncase.me/
3 www.lostgarden.com/2011/10/triple-town-beta-now-with-bears.html

Amplifying Themes and Emotions in Systems ■ 147

www.stephanebura.com/
http://ncase.me/
www.lostgarden.com/

This page intentionally left blank

CHAP T ER 13

Emergent Narrative in
Dwarf Fortress

Tarn Adams
Bay 12 Games

L ike many games, Dwarf Fortress doesn’t have an authored story or
even handwritten characters or locations. Yet Dwarf Fortress players

themselves have produced an impressive body of fiction across differ-
ent media, and the events described tie tightly into the mechanics of
the game. When we talk about emergent narrative, we’re referring
to these kinds of stories, imagined and possibly retold by players
recounting their experiences in a game, often adding details not
present in the game itself, coherent and interesting beyond a simple
recounting of the playthrough, but also not entering the more purely
creative realm of fan fiction.
Dwarf Fortress has a reputation as a complex game that relies on

procedural generation, but neither of these properties guarantees emer-
gent narrative on its own. Complexity can harm the ability of the player
to understand what’s going on in their game, and procedurality can
make the game world an unintelligible or boring mess. Yet, with some
attention, even as a game becomes more complex and relies less on
authored content, it’s possible to design toward the players’ ability to
create their own stories.

DESIGNING FOR EMERGENT NARRATIVE
We approach this problem like other procedural generation challenges.
A straightforward and usually effective method is to produce an example

149

output and ask “what’s the least I can do to generate more of these?” In
this case, the example output is a story snippet as told by a theoretical
player. Consider the following:
“A kobold crept into the workshop and stole Urist’s masterpiece

scepter. Urist was distraught for days afterward.”
This is a common enough event inDwarf Fortress, something one player

might say to another when recounting a game, but as a guide for creating
a game from scratch, even this simple example is loaded with implications:

• A kobold? How is this defined? Where does it come from and how
often? Is it always there to steal things?

• Crept? Are there stealth mechanics? Do the maps support that?
Can the player tell what’s going on? Can the player prevent
stealthy intrusions or otherwise engage with them?

• Workshop? How does the player make and interact with this?
What control does the player have, and does that interfere with
narrative formation? Are items kept inside of a workshop?

• Stole? Is the scepter owned by an individual or by a community?
Are there laws? Do they apply to kobolds? Is theft formally
punished in some way? Or is this more like a bear stealing from
a picnic basket?

• Urist? A name! That’s interesting. Where did it come from?
Should the player be able to choose names or not? Does the
kobold have an identity like Urist does?

• Urist’s? Were we correct that items are owned, or is this an
indicator of the artisan alone, as the workshop might imply? How
do we understand Urist’s connection to the scepter specifically?

• Masterpiece? So the item’s quality seems important for this snip-
pet. … How does that work? Are some artisans better than others?
Do we need a skill system?

• Scepter? An evocative-enough sort of item. How do item types
work? Do they matter? Are scepters important? Does the player or
the artisan decide which kinds are made?

150 ■ Procedural Storytelling in Game Design

• Distraught? Are we simulating emotions? Or is this a numeric
event with an icon attached? Can we keep these reactions simple
and maintain fresh narratives, or do we need some variety? If so,
can the player understand what’s going on? Do they need to
understand to tell their story? How did Urist figure out the
scepter was stolen? Did the quality of the scepter impact the
amplitude of the emotion?

• Days? How does time work in this game? How is time shown to
the player? If time is compressed, as is often the case, does that
interfere with the flow of stories or other mechanics you might
want to add?

This snippet alone has raised a lot of questions, but if we answer
them in our design, we’ll have a game capable of producing this
story. Which questions look the most pertinent? Days is an after-
thought, masterpiece an unnecessary detail; if I wanted to get a pro-
totype up as soon as possible, I’d get a dwarf crafting objects in
a workshop. For brevity’s sake, the dwarf would have a name from a simple
table, the crafted item type would be selected from another simple table,
and the workshop would be a patch on the ground in some empty map.
This is in fact what we had within a day or two of starting on Dwarf
Fortress, along with mining into a cliff face. The kobolds came later. The
emotional distress came well after that, as it’s a nice part of the story, but
not a driver of events until it has its own consequences (“And then Urist
threw a tantrum.”) Other priorities are possible, and they lead to different
games as development continues, since you can’t do everything. Not all of
these games will produce varied and surprising player stories, but they’ll
have other merits.
Focusing on player stories from the start of the project has helped us

home in on potent mechanics we otherwise wouldn’t have noticed and
steer away from mechanical details that don’t occur as part of player
stories (with varying success!). If you don’t think about player stories in
advance, you might find yourself getting invested in trivial matters,
especially if your game has simulation elements. It is very easy to over-
design a simulation that’s intended for narrative purposes. In the
example, the exact nature of the scepter is not described. An enthusiastic

Emergent Narrative in Dwarf Fortress ■ 151

player might elaborate on the construction of the scepter in detail, sure,
but it’s not likely to occur as part of a plot beat, unless the construction
itself has narrative ramifications. Detailed simulation is not always related
to emergent narrative, and exposition of that detail might work against
storytelling by overloading the player with insignificant facts.
At the same time, narrative potential is tied to simulation potential.

Our story analysis implies a set of related elements and systems, all
necessary to produce that particular snippet. An emergent story
oftentimes passes through rapid plot beats that connect to each
other, and if there aren’t sufficient connections, that story thread
will fizzle; we work to identify those mechanics and game objects
that are at a nexus of story flow and try to center them. It is not
sufficient to add a tangle of mechanics, throwing everything in a jar
and shaking it and hoping a story comes out. You must pay atten-
tion to the kind and density of connections, and it’s important to
both design and expose these connections in terms that both you and
the player can understand.
Once you get a feel for how stories move along the mechanical

connections you create, your general design sense can kick in: how
does an alteration to the game’s mechanics alter the flow of possible
stories? Does the story now pass more easily into richly connected
subsystems, or have you created a dead end? This is yet another reason
it’s important to make your game playable as soon as possible in develop-
ment. The emergent narrative design instincts you haven’t yet obtained
through practice can be compensated for by ongoing playtesting.
You can see this story flow in action, both the good and the bad, in

many of Dwarf Fortress’s features. Research and scholarship are dead
end mechanics since they don’t tie into enough of the time-tested
narratively potent game elements. A player can design a library, assign
researchers, create and copy scientific manuscripts, produce book-
shelves, place tables, and so forth, but generally, what happens in the
library stays in the library. As of this writing, we haven’t linked the
invention of new technologies into the game mechanics; for instance, if
research breakthroughs changed the division of labor and industry in
the fortress, that would create some story moments. Even the interesting
spats between apprentices and teachers from the game’s history generation
aren’t yet translated into player-side mechanics. You might occasionally get

152 ■ Procedural Storytelling in Game Design

a semi-interesting tale about a visiting scholar, but it’s hardly ever the
narrative core of a player’s retelling of a fortress.
On the other side, we have, perhaps surprisingly, engraving as one of

the strongest central narrative mechanisms in the game. It relates to
everything. Engraving is a dwarven profession and in-game skill. Engra-
vers can make images of historical events, other dwarves, their food
preferences, and animals they are scared of, among others. The player
can choose where the engraving is placed, often a location of signifi-
cance, and can partially or fully determine its content or leave it up to
the whim of the dwarven artist. Engravings interact with the physical
descriptive systems through the wall or item selected.
These connections have consequences. Many of the most striking

community stories center around fortresses that have fallen, and the
decision of which engraving a dwarf makes at the end can slant the
entire narrative. Does the last survivor carve a defiant picture of the
demon lord being slain during the final struggle? An industrious scene
recalling the foundation of the fortress when there was still hope? Or
themselves, surrounded by their favorite cheese, as they descend into
grief? The story flows freely into and out of engraving, as this game
system is properly interconnected, both physically (through the acting
dwarf) and more conceptually (through historical events and personality
traits), and the choice to engrave is player-driven.
However, relative dead ends are inevitable and can be salvaged. For

any given feature you’ve decided to add, it’s important to have a “good
enough” stopping point. In Dwarf Fortress, we’ve found this to be true
with our book titles, for instance. They are generated using a fairly
simple list and substitution method, but people enjoy them: the titles
sometimes create conceptual fodder for stories, and they bring some life
to the research system on a purely flavorful basis. Due to constraints in
our language system, tying book titles more dynamically to other
mechanics is a difficult problem, but we don’t have to do that. If
a system works cleanly in the game, accomplishes something, and
doesn’t inhibit further additions, you can polish it up, let it do its job,
and move on, even if it’s not a major contributor to the emergent
narratives.
Just remember that the more you polish an element, the harder it

may become to extend it if you later find it necessary. Stopping

Emergent Narrative in Dwarf Fortress ■ 153

points won’t always be permanent, and you need to choose them
carefully. Indeed, as stated above, Dwarf Fortress’s lengthy handwrit-
ten list of book titles cannot be squared with its language system
easily, and any language extension would be more difficult because of
that. But polish is desirable, as emergent narrative is much more
effective when the player is playing a game they enjoy. All of your
design skills matter.
In fact, your broader experience is crucial; even with a healthy set of

connected mechanics and a strong game loop in which the player is
constantly faced with interesting choices, the amazing ability of
players to fill in details and make coherent stories from imperfect
information does not necessarily happen in a way that will allow
them to tell their stories to other players and the outside world.
What elements of your game are familiar and relatable? Which
would other people understand, even people that will never play the
game? Dwarf Fortress relies on widely understood fantasy tropes.
Because it is your player building the story, you can use what the
player brings to the game beforehand. Do your game elements
connect to the outside world in any way? Do they resonate with
you, and are they likely to resonate with other people? Can you bring
that into focus mechanically or aesthetically (preferably both)? Can
you think of other ways to build attachment between the player and
the game elements?
For example, names and the ability to give nicknames are great here;

the former will almost certainly come up if you analyze a story, and the
latter almost certainly won’t. That is, example output doesn’t capture
the full picture. Thinking about the player’s role, in this case converting
a passive story element into an active player ability, is a second crucial
part of building emergent narrative. Let’s discuss the player.

THE PLAYER’S PERSPECTIVE AND EXPOSITION
The player’s place in the game determines the perspective of narratives
that arise, how the player learns about what’s going on, and possible
ways to act to alter the narrative. You’ll probably have an idea of the
player’s role before you begin deciding other details of your project, but
it’s important to consider how these choices impact emergent narrative

154 ■ Procedural Storytelling in Game Design

and how you might use the player’s role and abilities to enhance the
story creation process.
In Dwarf Fortress, we conceive of the player as “the official will of the

fortress,” which gives the dwarves a great deal of autonomy while still
allowing the player to give orders. For instance, the player indirectly
induces the AI agents to create spaces through mining designations, and
those spaces can be assigned functions and names, which allow them to
more easily become a part of any story that develops. The player also
determines most of the items that are crafted in the fort. Spaces and
objects created by the player have more meaning, since players generally
understand their own intentions better than the game does, and the
subsequent action in the game will take place in these spaces using these
objects.
There are other possibilities, of course. The player could have been

assigned to a single dwarf in a leadership position or to a more
personified spirit or god of some kind ordering events, and each of
these potential roles has drawbacks and advantages. For us, it was
important that information could plausibly be received by players
abstractly, so they can be kept apprised of what’s going on all over the
fortress in an instant, and it was also important for the dwarves to
maintain control over their own actions, especially on their free time, in
order for events to happen that both surprise the player and give the
dwarves a sense of being coherent characters in their shared world.
In order for any of this to matter, the player needs to know what’s

going on. Even in small projects, the data stream can be immense, so we
need to selectively surface and highlight features of the underlying
systems that we think are important. Part of this was done when we
chose our mechanics, but that’s just the beginning. We can use cues,
such as alerts, announcements, decision windows, and other more
subtle indicators, to let players know that their stories are waiting to
be continued. Players can act, in which case they’ve potentially linked
two plot beats together (the situation and their response), along with
their intention and emotional context. They can observe an event,
which becomes a plot beat. If the cue makes them curious enough,
players might investigate the situation, using the powers you’ve given
them through their role. This might build up to an action, but even if
players are just poking around and ultimately do nothing, the entire

Emergent Narrative in Dwarf Fortress ■ 155

process might lead to an impressive chain of connections that can form
a portion of the story. At the other extreme, if players are uninterested
in the cue, they can ignore it. This is bad if it happens too often, and
sometimes players might be compelled to act, but the ability of the
player to control how their stories are put together is key, and some-
times that means not engaging with everything on offer. Not having to
deal with something can save the flow of the story being built in their
mind: act, investigate, observe or move on.
It’s also work to do a query, and it disrupts the game flow, so it’s

good to try to surface things that are likely to be more meaningful or
narrative-building to relieve the player of as much of the burden as
possible. The most important properties and relationships can be spatial
(Where is X?) and naturally surfaced through the display, but they can
also be social or conceptual (Why is X talking with Y? What does
X believe?). It all depends on the situation and the role. The role the
player occupies also limits the sorts of cues, queries, and actions that are
possible or make sense.
At its worst, from the perspective of emergent narrative, we fall back

on an explicit non-interactive in-the-past account for players to read, in
the hopes that they can include some of it in their larger stories. Dwarf
Fortress does this with verbose combat reports players can open if they
choose. Players will often use these reports to fill in details when they
are composing their stories, if they feel the specifics of the combat are
narratively interesting. The upside of using openable reports is
a reduction in the data stream players absorb during active play, but it
requires a careful prioritization of information. In Dwarf Fortress, for
instance, combat deaths are displayed in the main announcement
queue, in addition to the combat reports, since they are too important
to risk missing. This crucial information can be passively received from
the main view and becomes incorporated into players’ internal narra-
tives without any effort on their part. If the death announcement makes
them curious about specifics, they can check the report.
Really, players need not be able to act upon the world at all for

narratives to form (though the ability to direct change certainly helps
players become invested in what’s going on.) It’s sufficient to give
players the ability to focus and query the system in order to find
threads. It’s possible to conceive of a simulation that does all this on

156 ■ Procedural Storytelling in Game Design

its own and just presents a finished narrative to the user, but that’s often
clumsy. Even so, in Dwarf Fortress, Legends mode prepares threads for
people from the generated dataset of hundreds of thousands of events
and figures, and where we failed, people made mods to allow them to
better sift through the data. Some people play the game exclusively in
this fashion, generating histories and finding stories, even relaying them
to the broader community.
On the other hand, if players are given the ability to do anything they

please, they can immediately make entertaining things happen; perhaps
this is good for a short story, but it is difficult for the underlying
systems to “be themselves,” for them to feel independent of the story-
teller. Between these two extremes, consider selecting players’ available
actions and their ability to query the system using the nature of their
roles as guides.
The overall play flow of action, observation, and investigation can be

complex. Although a player’s story will often end up reading as
a coherent single narrative, during the preceding process of play,
threads can be set down, return, join, and break off. The player is even
free to leave one role and move to another. In Dwarf Fortress, we do
this explicitly using the Fortress, Adventurer, and Legends modes. This
sort of role changing is an important part of the process, since it allows
people to explore a situation from a different perspective, and the
meaning wrapped up in an old fortress or adventurer that was once
player-controlled amplifies the narrative potential. When players’
adventurers explore their previous fortresses, each room will hold old
stories they’ll have in mind as they play.
In multiplayer games, or serially single-player games (such as a Dwarf

Fortress “succession” game), the narrative building process can become
even more complicated. If you can’t anticipate what your players are
going to do (and you won’t always be able to!), watch what they end up
doing and try to support these new forms of story building during
playtesting, updates, and subsequent games.
In the end, even with a great deal of carefully planned systems and

a carefully designed player role, players will invent non-existent
mechanics and be incorrect about what’s going on. This is fine! We
routinely and by necessity lean on players’ ability to spin stories on their
own, and this can require some invention. We can even empower them

Emergent Narrative in Dwarf Fortress ■ 157

to change the game’s rules through modding and other customization;
when players brings their own understood assets to a game, the narrative
connections can only increase.
In general, if players can customize the game to get the experience

they want, they are more likely to play and tell stories about it.
Customization can also extend the realm of the emergent narratives
surrounding the game. Dwarf Fortress world generation has been used
as a standalone tool for fantasy cartographers and people building
pen-and-paper campaign settings (for more on table-top narrative
generation, see Chapter 20).
As long as people are using your game creatively or otherwise edifying

or enjoying themselves, the design is working as intended.

158 ■ Procedural Storytelling in Game Design

CHAP T ER 14

Heavily Authored
Dynamic Storytelling in
Church in the Darkness

Richard Rouse III
Paranoid Productions

T he goal with The Church in the Darkness is to tell a very specific
story through a very specific game. The story I wanted to tell had

multiple sides, and I thought it would benefit from a dynamic narrative
system. Though we invite the player into the creation of the story more
than we possibly could on a linear story on the same subject, it was still
conceived as a very authored experience. Our goal was not to create
a complex procedural storytelling system that could be used for any
number of games but instead one that would change enough for players
to notice and that would help us tell the story we wanted to tell.
For context, it may be helpful for the reader to hear the trade-show-ready

pitch for the game:

The Church in the Darkness is a top-down action infiltration game
set inside a religious cult in the 1970s, with a story that changes
every time you play. Inspired by the many outsider and new-age
religious movements that sprang up during the 1970s—a period of
crisis for the American people—our game features the Collective
Justice Mission, a group as strongly socialist as they are Christian,
led the by their charismatic cult leaders Isaac and Rebecca Walker.
The group has a deep hatred for the US government and a fear/

159

paranoia that the government will come to destroy them (fears not
entirely unfounded based on the US government’s well documen-
ted infiltration/manipulation of progressive groups in that era).
Saying they just want to live peacefully, the Collective Justice
Mission relocates down to the jungles of Battuela, a South Amer-
ican country on the Caribbean coast where they aim to build their
own socialist utopia in the north end of the Amazon. They call
this new community Freedom Town. The player is Vic, an ex-cop
whose nephew Alex is a member of the group. When Vic’s sister
Stella becomes worried, the player must infiltrate the group to find
Alex and check on him. But the player isn’t sure whether the
group is a bunch of radicals who truly are just building their own
community or if something more apocalyptic and sinister is in
their future.

And as a final twist to this premise, we change the nature of the cult
each time a game starts, casting the player as a bit of a detective, trying
to find out what’s really going on. The Church in the Darkness is
a mystery game where not only do you not know who the murderer is,
but you’re not sure a murder has taken place or will ever take place. It’s

FIGURE 14.1 The Church in the Darkness.

160 ■ Procedural Storytelling in Game Design

a detective story where the antagonists may sometimes be villains but
sometimes are actually the heroes.

MOTIVATIONS
Cults have long interested me as alternative societies within our larger
society. As I read up on cults, what really interested me was how a cult
group can be very hard to understand from the outside. Indeed, for
those in the cult, the group will often not be seen as a cult at all. After
all, no one joins a cult on purpose. Contrary to popular opinion, the
people who join are not always weak-willed people who are easily
fooled. Often they are very strong-willed, idealistic people who want to
improve something, whether themselves, their neighbors, or the entire
world. But as cult groups get wrapped up in their “work,” members can
lose perspective. Throw in a charismatic leader who is given absolute
power, and one can see how things can go wrong. Or not. Many groups
that have the qualities that would label them “cults” don’t do anything
illegal or that sinister. Most of them won’t kill anyone or harm
themselves. They may reject the comforts of modern society or take up
beliefs that seem weird to the rest of society, but many would say the
fulfillment they get out of being in the group more than makes up for
that. So how does one know if a cult is truly bad?
Being able to tell that difference was what I wanted to explore with

The Church in the Darkness. As a game designer, I’m always thinking of
settings that would be interesting to explore in game form. Looking at
a cult and deciding if they were apocalyptic sounded like an intriguing
mystery to base a game around. Mystery stories are essentially stories as
puzzles (can you figure out whodunit before the end of the book?) and
work very well as game narratives, which are often full of more literal
puzzles for players to deal with. The downside of puzzles—whether
a crossword or a metal ring puzzle or a mystery novel—is that after one
has solved it once, it is significantly less interesting. The joy of “figuring
out the solution” will never be repeated. So if the central mystery in our
game is “is this group dangerous or not?” it made sense that we would
want to make the answer to that mystery different every time someone
played. This is in part because it would make the game replayable, but
also it would allow the game to explore the difference between a benign

Dynamic Storytelling in Church in the Darkness ■ 161

cult and a more sinister one, a difference that can be very subtle indeed.
To pull all that off, we would need a very specific procedural storytelling
system to make this very specific story work. Knowing what story we
wanted to tell directly influenced the architecture of our narrative
systems.

INSPIRATIONS
For both gameplay and narrative, we took our inspiration from the
tumultuous real world of 1970s United States, including several real-
world cults from that period. Studying those groups, there are many
common threads that are perfect for a game like this. A remote jungle
compound is inherently a confined setting—ideal for a game—with
a natural boundary around the play space. Almost all cults are fearful of
outsiders; this helps explain why most of the people players meet in
Freedom Town are fearful of their presence and will either attack or flee.
This means we can make a whole simulated community without building
everyone into a fully interactive character. But we took certain characters
who are more skeptical about the purity of the cult and turned them into
fully fleshed out personalities who will talk to players.
We deliver a lot of our narrative via loudspeakers placed around

Freedom Town, another tactic employed by real-world cult groups. It’s
a natural fit for an action game with a narrative, where you can hear the
cult leaders preaching their dogma while you simultaneously play the
game. Through listening to this dialog, the player learns that no words
spoken by the leaders are accidental: everything is propaganda, and it’s
propaganda that you hear constantly (Figure 14.2.) Also, the voices on
the PA in the camp may inaccurately report events related to what the
player has done, showing how leaders may use their preaching for
disinformation, another common cult tactic. Talking to former mem-
bers of cults, I learned that members of a group would often remember
the same event completely differently, depending on how indoctrinated
a particular member was.
My largest takeaway from real-world cults led to me to portray

almost everyone involved in the group as having fairly noble motives.
Almost every cult group you encounter provides some positive benefit.
Whether it’s helping people get off drugs or move away from abusive

162 ■ Procedural Storytelling in Game Design

situations or lifting them out of poverty or promising to take care of
them when they’re old or promising to fight to make the whole world
better. The non-stop propaganda in the game is a way for players to
hear some of the cult’s beliefs and realize that they may actually agree
with many of them. At the same time, there’s always something slightly
“off” about what’s being said, leaving most players with the feeling that
no matter how good their intentions, the Collective Justice Mission
starts a good idea and takes it at least somewhat too far, and in more
sinister outcomes, way too far.
Beyond our real-world inspirations for the game, we had inspirations

from other games. Board games are by their nature almost designed to
be replayed; indeed, digital games that are meant to be played once can
be seen as aberrations from the centuries of board game design that
came before them. Naturally, board games that attempt to have
a stronger narrative component have to figure out a way to make that
narrative replayable. The best mass market example one can think of is
the board game Clue, which endeavors to model a murder mystery, with
different victims and guilty parties each time. But beyond modeling

FIGURE 14.2 Propaganda takes many forms throughout the compound.

Dynamic Storytelling in Church in the Darkness ■ 163

these plot points as game tokens, Clue doesn’t do much to make the
game feel like a story.
An early digital game from 1983,Murder on the Zinderneuf, had always

intrigued me as a computer version of Clue, but using the benefits of
a digital game to make it feel more like a story. Instead of just hunting for
pure “clues” without a narrative as one does in Clue, Zinderneuf uses
a Madlibs-like system to make the experience feel more like a story.
Characters have pre-written scripts with open slots for characters’ names,
attributes, and qualities. The game employs various “Murder Scenarios”
and then slots the passengers on board the Zinderneuf (a large blimp) into
those different scenarios. The main mechanic of the game was interrogat-
ing as one of the several detectives the player could choose, with
characters reacting differently to different investigators. The game even
included a “red herring” to distract players, but as designer Paul Reiche
III told me: “The Red Herring character was there to add a little mis-
direction. I think we found that the Red Herring had to be pretty dang
obviously Red Herringy or the player would just get confused.” (For more
on the game and the context of its creation, see Chapter 6.)
I took this as an important lesson for procedural mystery games:

players are so unaccustomed to experiencing procedural narratives that
if you force them to figure out the story in order to win the game, at some
point you must make the story pretty obvious to give players a fair shot.
Another game that has long fascinated was the Blade Runner adven-

ture game from 1997. The game feels very much like a ’90s -era point-
and-click adventure game, but under the hood Blade Runner is actually
a complex simulation in which any character can be killed at any time
and the story randomizes which characters are replicants, with obvious
plot ramifications. This all leads to over 40 possible endings. As Louis
Castle, the game’s executive producer and director, told me:

We did not build a complex branching tree but instead ran
a simulation of all the avatars in the world and had the complex
data base of inputs drive variables that would surface events and
clues … In effect clues were passed from avatar to avatar creating
an impression of the player which avatars reacted to. The emer-
gent play allowed players to chase down witnesses to their actions
to prevent propagation of the player’s indiscretions … It was

164 ■ Procedural Storytelling in Game Design

actually almost impossible to get the same game experience even if
you loaded an old save game.

Castle, Louis, personal communication

Though being delighted by the premise and structure of the game, my
biggest takeaway from Blade Runner was the curious way players saw it:
most players did not even realize Blade Runner involved procedural
storytelling. On the one hand, this could be seen as a triumph for the
game; if it feels just like a completely authored game, the procedural
storytelling must be doing its job. As Louis Castle said:

The choices in Blade Runner were intended to drive the narrative
to adapt to what the player did naturally … We certainly saw the
world within two extremes but we also made the conscious choice
to support either extreme as valid and equally importantly, and
support all areas between the extremes … [This was discussed] in
the marketing/PR but the point of the design was to allow each
person to feel they were doing the ‘correct’ thing so we did not
push the point of paths or multiple outcomes.

Castle, Louis, personal communication

Though I respect this creative intent, I see an unanticipated downside.
Players will play a game differently if they know it is truly reacting to
their actions, just as they are more likely to replay it if they know the
story will be different.
Although the complexity of the procedural storytelling being done in

something like The Walking Dead adventure games is much simpler than
what Blade Runner did (“procedural” is probably the wrong term for what
The Walking Dead does), the game does an excellent job of telegraphing to
the player that choices matter, so everyone who plays the games knows
what they’re getting into, and this changes the way people play the game.

CORE SYSTEMS
With these games as inspiration and a strong plan to tell a specific story
inspired by cults in the real world, we picked the narrative systems we

Dynamic Storytelling in Church in the Darkness ■ 165

would need to tell the story dynamically, keeping the mystery an
unknown each time the player plays. Part of this design was really
wanting players to replay the game, so any one playthrough is short
enough that playing it again doesn’t seem too daunting. Though it may
take 2 to 4 hours of total playtime for many players to get to one
ending, it usually takes them less than an hour on each subsequent try,
allowing them to explore the narrative and where they can take it more
once they have the hang of the gameplay. As is the nature of a game
that blends narrative with infiltration/stealth gameplay, we get wildly
different playtimes for players. Some take it very cautiously and meti-
culously and it lasts a lot longer, while some charge in headfirst and
may move through faster. So too, some players will exhaustively search
for every document and scrap of paper they can find, reading them
carefully and thinking about how they connect to what else they’ve
learned. Some will of course spend less time digging into the lore, just
pushing through to an ending as some players prefer. But for all players,
replays get quicker and quicker as players learn the way the game works
and know what they’re doing when they start another playthrough.
Since there are no cut scenes or any activities that require a fixed
amount of time to complete, player speed is very much self-driven
(Figure 14.3.)
The core of the systems lies with the randomization of the cult

leaders’ personality from several discrete starting states. We could have
gone with a more complex system for generating this narrative starting
point. Though more complex character simulations involving lots of
personality traits that produce subtle results can be very interesting and
have been done well by other games, there’s a point at which those
changes are too small for players to easily perceive, and one runs the
risk of creating a game in which the simulation is rich but players’
understanding of it is poor. We wanted to emphasize changes that were
substantial enough that they would be keenly noticeable to players. So
we built something we felt players could keep a handle on, which
allowed us to craft custom dialog and narrative pieces for each potential
starting state. Some other factors are thrown in to randomize specific
parts of the story separate from the preachers’ core personalities—these
are done for specific story beats intended for narrative flavor as well as
to provide a little noise in the system.

166 ■ Procedural Storytelling in Game Design

On subsequent playthroughs, players are given the option of playing
the same story start state as in their previous playthrough, or they may
pick one they have never finished before, or they can pick entirely
randomly. Though the mystery was a core part of the design, we
recognized some players would want to build on knowledge accrued in
a previous playthrough (where they may have died before finishing).
While playing the game multiple times, players will of course see some
content repeating, particularly when they pick to play the same story
starting state again. But we authored enough variety of content to allow
players to continue to see different parts, even when in the same
starting state. And though not every part of the narrative they uncover
will be new on those replays, seeing repeating content will reinforce the
conclusions players have reached about content seen earlier, which
means they are a “leg up” in detective work on figuring out just how
dangerous the cult leaders are this time around.
As the narrative start state is randomized, so are a number of game-

play factors. The world of Freedom Town is a large, open map, which
players can explore in any way they like, from the main roads to side
areas or foot trails hidden in the woods (Figure 14.4.) The player starts
in a random location around the perimeter of the map, thus forcing

FIGURE 14.3 The player finds themself in a potentially dangerous situation.

Dynamic Storytelling in Church in the Darkness ■ 167

them to see different sections of the map with each playthrough. The
physical locations of the core characters in the game are moved around
the map each time. Players’ required goal is to make contact with their
nephew Alex and then lead him out of Freedom Town; exploring the
map to gather info that leads to Alex is the player’s core activity. An
optional though encouraged goal is to find the preachers who lead the
Collective Justice Mission, and an algorithm places them elsewhere on
the map, far from Alex’s location and the player’s current location; the
preachers are only placed there after players have made one of several
chunks of narrative progress. All these locations are pre-authored, and
the density of guards is increased around each position to ramp up
difficulty for players as they reach these final objectives. In addition to
moving players around the map with these moving objectives, we also
randomize all resource locations and guard layouts. A more elaborate
take on the procedural generation would have involved reconstructing
the physical map in a number of different configurations, but this was
cut for scope reasons early on.
I mentioned that finding the preachers is optional, and indeed it

forms one of players’ larger choices: do they just want to save their

FIGURE 14.4 Freedom Town.

168 ■ Procedural Storytelling in Game Design

nephews and get them out of the cult? Or do they want to prevent
something bad that might happen to everyone in the cult in the future,
after getting Alex out. The ending summarizes not only their actions
and Alex’s outcome, but also what happens to the cult group as a whole.
How much detective work players want to do is up to them. It may be
that players rescue Alex and find out what happened after they left.
Players who choose to sleuth around longer will find more information
and can make a more informed decision about what to do. When the
ultimate ending shocks players who may have been completely focused
on getting Alex out, it is my hope that players will rethink how they
approach a situation like that, in a game or otherwise. I hope players
realize that gathering data and evidence is important before jumping to
conclusions or taking irreversible actions. Ultimately, this is the player’s
choice, and there are very few limitations put on players doing what
they want to do once they get to Alex.
The narrative is delivered during gameplay using a few key techniques.

The cult leaders Isaac and Rebecca Walker address their followers over
the PA system spread throughout Freedom Town (Figure 14.5). As
players maneuver between guards and searches for Alex, they will
unavoidably hear about the leader’s dogma and instructions to followers.

FIGURE 14.5 A part of the PA system used by the cult leaders.

Dynamic Storytelling in Church in the Darkness ■ 169

There are several banks of lines played purely randomly, with certain
lines of dialog in each set that will change based on the leaders’
personalities on that playthrough. There are multiple stages of the cult
leaders moods, so after players have been playing for a certain amount of
time or done specific actions, the dialog banks will advance in sequence.
Mixed in with the random lines of dialog is a series of dialog that always
plays in the same order, with lines that change depending on the leaders’
personality. This non-randomized dialog gives a spine to what players
will hear and gives the PA dialog more structure than it would have were
it entirely random. It is also set apart by being the only dialog in which
the cult leaders talk back and forth to each other.
Running in parallel, players search trunks to find resources like

medicine and food (both for quick health recovery), gadgets, weap-
ons, and other equipment that will help them get through Freedom
Town. Players will also search in desks, which give players documents
that serve both practical and purely narrative functions. One route to
Alex is to with increasingly detailed maps that ultimately reveal his
location. These maps are only found in the desks, and players are
encouraged to search the desks to help them find the maps and find
Alex. However, mixed in with the maps are letters, paperwork, diary
entries, and other documents that help tell the story of Freedom
Town (Figure 14.6).
The game uses a system to place the items in the desks in a very

specific order. Regardless of which desks they search, players will always
find the maps in an order of increasing detail. Purely narrative docu-
ments are sorted into several categories: a) some tell the story of Alex in
the camp; these are always found in the same order with variations
depending on which starting scenario players have, b) other notes tell
the story of other characters in Freedom Town—each of these sets is
also found in order with that set, but the orders of the sets are
randomized, and not all sets will be present in a given game, and c)
still other documents that are randomly sprinkled in for further bits of
narrative color. The system used for propagating the desks with docu-
ments ended up being one of the most complex systems in the game,
with a series of weightings used for the different sets to create notes
sequences that felt different to the player each time but still told the
story of that playthrough of the game.

170 ■ Procedural Storytelling in Game Design

A final element of the narrative is comprised of side characters, added
to make sure player hear the point of view of members of the cult, not just
the leaders. These vary their location and change their dialog based on
what they think of the cult leaders’ dispositions that playthrough, as well
as reacting to some of the players’ actions in Freedom Town thus far.
They too provide a route to Alex, as they will share what they know of his
location if players request it. Though there is substantial variation to what
they can say, these characters are some of the most heavily authored
content in the game, functioning much like characters in many RPGs.

PLAYER CHOICES
With just those systems in place, on each playthrough the player would
get one of several specific stories, with some randomized variation
providing different slices of those stories. But when one adds in the
players’ own choices, there’s a combinatorial effect creating many, many
more variations in the overall story of one given playthrough.
At a very basic level, this is a narrative that changes with how much

players choose to explore it. Do they try to find all the friendly
characters and hear their stories? Do they risk their lives to talk to

FIGURE 14.6 A postcard from Alex.

Dynamic Storytelling in Church in the Darkness ■ 171

Isaac and Rebecca and hear their point of view? Do they try to collect
all the documents in the game to see what they contain? And since all
the characters and all the documents will never be in one or even five
playthroughs of the game, how many times do they play the game to try
to experience all of the story content? How much time the player
spends digging out narrative content is a choice in itself.
Players make bigger choices expressed through infiltration gameplay

as well as more narrative related choices. For the core fast-paced stealth
gameplay (Figure 14.7), players have the option of playing lethally or
non-lethally, with further options to try to avoid detection completely
(which can be quite difficult) or merely flee when danger presents itself
and allow the gameplay systems to reset once they have escaped
detection long enough.
There are gameplay consequences to playing lethally—more aggres-

sive guards and leaders who are more likely to execute the player when
they are captured. But there are also narrative changes, both in terms of
the dialog players are likely to hear and certain characters who will
refuse to speak to players or help them if they have been too murder-
ous. The amount of times players have been detected will lead to some
light narrative changes, where the characters will comment on players’

FIGURE 14.7 Stealth gameplay as the player approaches two guards.

172 ■ Procedural Storytelling in Game Design

more brazen infiltration. The gameplay consequences of being spotted
are limited to the moment, with alarms going off and guards running
in, but this resets, allowing players to progress and not get stuck in
a negative feedback loop merely from being detected.
Players also makes choices in what they do with key story situations. The

game’s only required objective is that players find and at least start
a conversation with Alex. What Alex says in that encounter changes
depending on the starting scenario and the players’ gameplay choices up
to that point. From there on, the players’ main choices are to let Alex stay
in Freedom Town, to ask him to follow them out, or force him to come
with them. Players also have choices about whether they next try to
confront or ultimately assassinate the cult leaders themselves. The whole
premise of the game is that players don’t know if the cult leaders are fully
apocalyptic/dangerous or merely radical in their beliefs, and once players
come to their own understanding of the situation, it’s up to them to decide
what to do with that information. Since the game features continuous
gameplay, it’s possible for unintended consequences to start to unfold. For
instance, players may try to rescue Alex but get him killed during
a shootout with guards. Or players’ presence in the camp may upset leaders
and cause them to move up their plans for apocalypse.
All of these player choices lead to more branching dialog, using

systems developers of RPGs and interactive fiction have been using for
decades. This too involves a heavy amount of authorship and script-
writing, with all of the game’s dialog voice acted. Though it could have
been interesting to sink time into a text generation system to provide
more variation to the notes players find, this was not something we
chose to pursue. Though the systems for handling these branches may
not be particularly innovative, because the starting state changes every
game, there are many more possibilities and possible endings than one
would normally find in a choice-based narrative game.
With all this choice, it’s easy for players to lose track of the overall arc of

the story they are creating with the game. A system we added to the game to
better anchor players’ experience involved “Chapter Titles.” This is text laid
over the screen when key events happen, coupled with a Roman numeral
(Figure 14.8.) Starting the game gets players “I. Down in the Jungle”; when
they get captured by the cult leaders they might get “II. They Know You”;
when they find Alex and lead him out of the game they could get “III.

Dynamic Storytelling in Church in the Darkness ■ 173

Exodus.” Lots of other game events are tracked, providing a large variety of
potential chapter sequences for players. The goal of the chapter system is to
let players know the choices they are making have real weight and make
them feel that they have truly told their own story when their sequence of
chapter titles is displayed at the game’s end.
For the ending, in addition to that story summary and final chapter

heading, players receive a longer piece of text that wraps up how the
cult reacted to the player’s presence in their town, as well as what
happened after the player left. Endings are built out of three text
chunks, written to be combined in a wide variety of ways. First is what
happened to Alex, or rather what players chose to do with him. Next is
how Freedom Town reacts to what players did with Alex, Isaac and
Rebecca, or other elements of the town, depending on what players
chose to take on. A third sentence says what happened to Freedom
Town based on players’ choices, an epilogue of a sort. The system for
handling all these permutations became complex enough that it had to
be written in code instead of being hooked up with level logic.
Indeed, the system is complex enough that I don’t actually know how

many permutations are possible, so I often say “more than 20.” I look

FIGURE 14.8 The game begins.

174 ■ Procedural Storytelling in Game Design

forward to seeing players talk about all the unique endings they have
achieved.

CONCLUSION: WHY BUILD IT?
I must confess to some amount of self-consciousness around writing
a chapter on The Church in the Darkness for a book on procedural
narrative. The level of technological complexity in this game is easily
dwarfed by games that have much larger procedural narrative ambi-
tions. Our choice to focus on our relatively simple version of procedural
narrative was partly due to scope. This project took a long time to
make, given our team size and our wanting to make a 3D infiltration
game with a decent feature set to go along with our strictly narrative
ambitions.
Another part has to do with our intent. We chose to architect our

dynamic story systems in a very specific way because of the story we
were trying to tell and the way we wanted to involve the player.
I wanted to show the many sides of looking from the outside at a cult
group by literally letting the player play games in which multiple cults
might exist (Figure 14.9), where players would make different choices
not because they were “trying to see all the content” but because the

FIGURE 14.9 Signs of distress among members of the Collective Justice Mission.

Dynamic Storytelling in Church in the Darkness ■ 175

context of those choices were changing. The narrative systems we chose
to focus on were the best way I knew to accomplish that.
The Church in the Darkness ends up being a highly authored exercise

in procedural narrative. I was sculpting a very specific experience for
players, despite giving them plenty of space to change and finish that
story in their own way. When we take on procedural narrative projects,
I think it’s important that designers, programmers, and writers think
about their intent. What is their game trying to accomplish in terms of
narrative? What is most important in getting that story across? The goal
shouldn’t be to create procedural narrative just to make an impressive
tech demo but to create it because it is the best way to tell the stories we
want to tell.

176 ■ Procedural Storytelling in Game Design

3
Worlds and Context

R ich settings, compelling backstories, and evocative descriptions are
all tools of a competent writer. A carefully constructed world can

bring out the full potential of the narrative, and the right descriptive
text by itself can pull the reader into the story, ready to set forth on the
promised journey with the author. Most video games depend from their
inception on their objects and spaces; even game designers focused on
procedural narrative are confronted immediately by the need for the
elements of world-building. In this section, we will examine several
projects that have engaged creatively with this aspect of the craft,
ranging from planetary descriptions to historical accounts.
Even with the power to construct an entire universe, a storyteller

does not operate in a vacuum, separate from the real world. The
broader social, moral, and political context finds its way into every
piece, and the piece itself can reflect and transform this context for the
benefit of the reader. Games with procedural stories can operate at this
level as well, and we’ll analyze some cases in the chapters that follow.

177

This page intentionally left blank

CHAP T ER 15

Generating Histories

Jason Grinblat
Freehold Games

P rocedurally generating history is a daunting task. The process of
proceduralization requires codifying relationships into rules, and

real-life histories are tangled webs of people, places, and events whose
complexities obscure their relational mechanics. The task is further
complicated by the fact that history serves a rhetorical function. That
is, historical accounts are used to promote certain cultural narratives that
can belie the facts they purport to narrativize (this function is routinely
neglected in video games’ treatment of history, even in primarily hand-
authored games). History generation is a new practice—part of the
burgeoning subfield of qualitative procedural generation—so these pro-
blems don’t yet have canonical solutions.
This chapter offers one formulation of history that we developed

while doing research for our far-future roguelike game Caves of Qud.
We use this model to discuss how a few other games generate their
histories. Then we delve into the details of Caves of Qud and the
generative history system we implemented for it. We cover the con-
straints and aesthetics that guided our design, how we generated and
engaged with histories, and how the system produces coherent narra-
tives through a process we call historical rationalization.
To proceduralize, we must start to untangle the web. This means

unpacking the biases encoded in our intuitions, examining our subject
in detail, and articulating a vision for its simulation. If we can make
headway on this task for history—a subject with as much systemic
richness as any—we’ll have opened up our art to a new class of
possibilities.

179

ENTITIES AND EVENTS
Over the course of our development cycle, we started to untangle the
web ourselves and think deeply about both the mechanics of history and
our vision for a generative history system. Part of this process involved
researching other games that experiment with generated histories. The
model described in this chapter came about by sussing out the patterns
across our own design and the designs we encountered. By no means is
it the definitive formulation. It’s meant only as a first step toward
a systemic reasoning about history and a bootstrap for those looking
to design their own generative history system.
Our model sees history as the interplay between historical entities

and historical events. Entities are people, places, and objects—the
subjects of history. Events act on entities and change them. Think of
entities as history’s nouns and events as its verbs. In algorithmic
terms, entities are data structures—essentially, bags of properties—
and events are functions that change those properties. A history,
then, is composed of a set of initial entities and a sequence of events.
The process a generative system uses to determine its sequence of
events we call its historical logic. What the system chooses to report
about a particular event’s resolution we call a historical account.
Accounts are exposed to players, often via text that’s generated
according to the details of the event. Systems that implement this
model do the following four things.

1. Model historical entities

2. Model historical events

3. Relate events together via an underlying logic

4. Expose historical accounts—the (alleged) results of events—to
players, often via text generation.

What events look like depends on the style of history being generated.
Events are where a lot of the feel of our generated histories get encoded.
In Caves of Qud, we were shooting for an ancient world aesthetic, so
our events include things like “#character# sieges a city” and “#char-
acter# builds a monument,” the kind of events you might expect to read

180 ■ Procedural Storytelling in Game Design

about in the biography of an ancient king or queen. But if you were
generating the history of, say, a high school class, your events might
look more like “#character# takes a test” and “#character1# and #char-
acter2# go on a first date.”
How might a system relate its events via an underlying logic? There are

several ways. In Epitaph, an idle game by Max Kreminski where players
direct the course of a civilization’s history by choosing which technologies it
acquires, an event’s occurrence affects how likely future events are to occur.
For example, if players grant their civilization mastery over fire, breakouts of
foodborne illnesses become less likely but forest fires become more likely.
These likelihoods are implemented via a set of weighted tables.1

In Dwarf Fortress, events are related via the logic of a deeper simulation.
Dwarves and other sentient creatures—examples of the game’s historical
entities—act according to the rules of the game’s physical and social
systems. When these rules cause a dwarf to do something the system
judges newsworthy, that action gets logged as a historic event and its
account recorded (these accounts are the annals you read in “Legends”
mode). Incidentally, this is how real-life histories are manufactured: an
authority creates a narrative from a subset of a larger pool of events, though
in the case of real-life histories the authority may distort or fabricate events.
Later in the chapter, we’ll explore another approach to historical

logic, the one we used for the generated histories in Caves of Qud.

SUBJECTIVITY IN HISTORY
I mentioned that historical accounts describe only the alleged results of
events. Before we go further, it’s worth unpacking this qualification and
elaborating on the point about history’s rhetorical function. The aim of
history as commonly understood is to recount past events accurately so
as to approach some objective reality (i.e., what actually occurred). But
historical accounts are always subjective, told from biased perspectives
and used to promote certain cultural narratives. By and large, games
don’t reckon with this richer picture of history, preferring instead to
adopt the reductive frame of objectivity.
There are of course exceptions. The Elder Scrolls series—particu-

larly Morrowind—explores the intersection of history and power
through heresies, narratives that are at odds with historical doctrine.

Generating Histories ■ 181

Opera Omnia—a beautiful gem of a game by Stephen Lavelle—takes
on the subjectivity of history as its major theme. You play as
a historian who specializes in migration patterns. Your politician
boss has political motives, and you must cynically construct historical
models to justify them. These games make explicit arguments about
history, but all games that incorporate history make arguments about
it, explicitly or implicitly. As we start to proceduralize history, we
should be mindful of what arguments we’re encoding in our algo-
rithms, especially as the reductive framing of history has been used to
justify so much harm.
In tackling this problem for Caves of Qud, we articulated two kinds of

history: history as a process and history as an artifact. The former can be
thought of as the playing out of rules and relationships that continually
produce the present. To simulate this process, we might seek to repro-
duce its logic. On the other hand, the latter is a constituent of the present,
something we engage with through a contemporary lens and whose
complexities may be obscured by that flattening of perspective. Only
historical accounts are accessible to us in the present, and, as mentioned,
those accounts are always biased and incomplete. To generate this type of
history—that is, to generate historical accounts—we might seek to recre-
ate the logic that produced it, or we might invent a new logic that
reproduces it altogether. This is what we did for Caves of Qud.

HISTORY GENERATION IN PRACTICE: CAVES OF QUD

Primer

Caves of Qud is set thousands of years in the future among the
geologically reclaimed ruins of a vast arcology. It draws inspiration
from a variety of historically minded sources, including pen & paper
RPG Gamma World, “Dying Earth” genre fiction like Clark Ashton
Smith’s Zothique and Gene Wolfe’s The Book of the New Sun, the
subversive works of New Wave sci-fi authors like Ursula K. Le Guin,
historical texts like Edward Gibbon’s The Decline and Fall of the Roman
Empire, and roguelike predecessors Dwarf Fortress and Ancient
Domains of Mystery (ADOM).
We use several techniques to construct the world of Caves of Qud. In

many ways, the game is a hybrid of handcrafted and procedural

182 ■ Procedural Storytelling in Game Design

systems. In contrast to most roguelikes, it features the kind of over-
arching, handcrafted narrative you might find in a traditional open-
world RPG. The world map is also static, but individual areas are highly
procedural and vary in detail from game to game. Many physical
systems are simulated, environments and bodies are mutable, and
there’s a rich social and political landscape for players to navigate.
Humanity’s relationship with history is one of the major themes of

Caves of Qud. By embedding players in a layered labyrinth of lost and
contemporary civilizations, it argues that our insights into the past are
always filtered through the lens of the present.

Constraints and Aesthetics

Because our design only makes sense in the context of the forces that
shaped it, let’s first discuss some of the constraints and aesthetic
principles that guided our choices of entities, events, and the historical
logic that relates them. In Caves of Qud, players engage with the past
only from the diegetic present, so we centered the perspective of history
as an artifact and focused on simulating historical accounts, things like
monuments, artwork, and historical texts. This meant we could cheat
on simulating authentic historical logic as long as the accounts it
produced were themselves authentic.
Two major constraints limited the scope of our design. First, because

the generated histories were being added as a tertiary system to a game
far along in its development, we were constrained on the resources we
could devote to its breadth and complexity. Second, the generated
histories had to mesh with the voice of the handcrafted lore and
narrative that had already been developed. To comply with these
constraints, we focused the generated histories around the mythic lives
of five significant rulers—called sultans—from a diegetic age known as
the sultanate, in which one of Qud’s early advanced cultures thrived and
before which much of the handwritten lore took place.
We also wanted to give the sultans characteristic personalities that

blurred the line between history and myth. To this end, we assigned
each sultan an archetypal unit of culture we called a domain.
Domains include culturally resonant, physical objects and phenom-
ena such as glass, jewels, ice, and stars, as well as abstract ideas such
as might, scholarship, and chance. They function similarly to

Generating Histories ■ 183

epithets in epic poetry, associating a character with a memorable
trait.
Finally, an aesthetic principle that guides much of Caves of Qud’s

procedural generation is the high valuation of novelty in its output. We
like to let our generators run wild. To this end, we avoided prescribing
a narrative arc for the sultans’ lives. That is, we didn’t include story
beats like “the sultan has a formative experience” or “the sultan over-
comes an obstacle.” Instead, we gave the generator room to trace
atypical life paths, relying on our players’ apophenia, the human
tendency to over perceive patterns, to drive their interpretations. This
point is especially important. Players engage with the sultan narratives
in a game world full of rich narrative context. The sultans are a part of
a cultural tapestry that includes the ruined environments of the diegetic
past, the characters and cultures of the present, and the aggregated
experiences of their myriad player characters. Each of these acts as
a cultural touchstone that colors interpretations of the sultans’ lives.
This allowed us to aim for evocative biographical narratives—rather
than meticulously detailed ones—that leverage our players’ apophenia.
Because we generate several sultans per instantiation of the game world,
and because the details of any individual sultan’s life have a limited
effect on the player’s critical path, we felt comfortable giving the
generator this room to thrive.

Cultural Artifacts and History’s Impact on the Generated World

Let’s look at how histories are generated and engaged with in Caves of
Qud. When a player starts a new game, the world-creation engine
generates a unique history in five periods, each one centered on
a generated sultan. Each period is comprised of several historical
events per our model, and for each event, a historical account is
generated as a descriptive text snippet. Internally, we call these historical
accounts gospels. Histories are generated one gospel at a time, and so
gospels form the basic discrete unit of history in Caves of Qud.
Currently, each event manifests a single gospel, but we’ve discussed
extending the system to generate multiple gospels for competing inter-
pretations of the same event.
During play, players engage with the generated history via gospels

shared by NPCs or appearing in the descriptions of cultural artifacts—

184 ■ Procedural Storytelling in Game Design

namely, shrines, paintings, and engravings—encountered in the game
world. These cultural artifacts are generated dynamically as players
explore new areas, and each depicts a single gospel from a sultan’s life,
chosen randomly from the generated history. Figure 15.1 shows an
example of a sultan shrine, including the gospel for the event it depicts.
Players can encounter these gospels in any order. As they do, they are
inscribed in a journal and sorted chronologically (see Figure 15.2).
Players can swap gospels with NPCs through a custom of cultural
exchange called the water ritual, mediated by a currency of reputation
with various in-game factions. Over time, players accrue more and
more of the gospels from a sultan’s life, and a biographical narrative
coheres.

FIGURE 15.1 A shrine depicting a historical event from the life of Uumasp II,
a procedurally generated sultan of ancient Qud.

Generating Histories ■ 185

Historical events also shape the generated game world. The sultans
visit places that are designed as historical entities and instantiated as
historic sites during world generation (see Figure 15.3). Items named
during the course of life events are also modeled as entities. If a sultan
leaves a named item at a location as the result of a life event, that item
is instantiated according to its historical properties at the appropriate
historic site. Players engage with the histories through cultural artifacts
that tell the sultans’ stories, and this historical knowledge acts as
a vector for players to find and engage with the material remnants of
the sultans’ lives.

The Model in Action

To reiterate, our system models history as the interplay among histor-
ical entities—places, items, and sultans represented as data structures—
and historical events that modify the properties of those entities. In
order to engender coherence in the generated historical narratives, the
events themselves are parameterized by the properties of existing
historical entities, including the very ones they modify.
Let’s examine how the system generates an individual sultan’s

history (illustrated in Figure 15.4). First, it instantiates a historical
entity that represents the sultan in an initial state with a few core
properties: name, pronouns, birth year, birth region, location in birth
region, and domain. Then, it resolves a birth event for the sultan, one

FIGURE 15.2 Several gospels from a sultan’s life appear in the player’s journal.

186 ■ Procedural Storytelling in Game Design

of the few events of a sultan’s life that are actually prescribed, along
with becoming the sultan and dying. Next, it randomly chooses a life
event—for example, sieges a city—from the event pool. Based in part
on the sultan’s state and in part on random branching, the event
resolves an outcome, and then it modifies the sultan’s properties and the
properties of any non-sultan historical entities that are consequently
affected. A gospel for the event is generated via a Tracery-like2 replace-
ment grammar whose rules map sultan properties to text fragments for
a variety of narrative circumstances. As a result of the event, some
global properties of the history are also updated, such as the
current year. The system then serially chooses and processes about
twelve more events in the same fashion, each one parameterized by the
sultan’s state at the start of the event, and each one transitioning the
sultan to a new state by the end of the event. Finally, if the sultan is still
alive, the system selects a generic event that results in the sultan’s death.
Taken in aggregate, the gospels for the events in the sultans’ lives form
their biographies.

FIGURE 15.3 A historic site generated in the world history, instantiated in the
game world and procedurally described.

Generating Histories ■ 187

Causality

Note what the random selection of events implies about our system’s
historical logic: strictly speaking, there isn’t any. Historical cause and
effect aren’t intrinsic. Events themselves are chosen at random, but their
gospels often profess causes. These rationalizations are generated inside
the events and are mediated by the sultan’s state. As an example, consider
the sieges a city event, whose gospel starts with the following pattern:
Acting against #injustice#, #sultanName# led an army to the gates of

#location#.
When determining how to replace #injustice#, the event examines the

sultan’s properties for meaningful state. If, for instance, the sultan has

Initialize
Sultan

Properties

Select Next
Event

Sultan Entity

Other Entities

Resolve Event
Details

Update State

program flow

input parameters

state updates

Global State

FIGURE 15.4 Flow diagram for the generation of a sultan’s history.

188 ■ Procedural Storytelling in Game Design

any allied animal factions—say, frogs—#injustice# may be replaced with
“the persecution of frogs.” In this way, the event’s effect precedes its
cause. When the sultan’s state fails to produce a suitable cause, the
event can even create one by, say, altering the sultan’s allied factions
property to include frogs and performing the aforementioned substitu-
tion. In these cases, there’s a full reversal of the expected causality: the
effect causes the cause.

Narrative Coherence

Though there’s no intrinsic causality to the series of events in a sultan’s life,
the event parameterization promotes player-interpreted causalities that
give rise to coherent biographical narratives. The sultan’s shared state acts
as a glue that holds the accounts of the disjointed events together. Domains
play an especially important role in the parameterization of events. In the
context of the replacement grammar, almost all gospel patterns include
symbols that represent domains, meaning that once the replacement is
complete, the generated text frequently includes narrative references to the
sultan’s domains. The effect is the production of a narrative coupling
between these domains and the sultan’s personality. The domains act as
narrative threads that tie together the events of a sultan’s life.
Table 15.1 includes the full set of gospels for the life of Antixerpur,

a generated sultan, with text fragments marked up according to how
they were generated. Let’s look at how rationalization causes a micro-
narrative to cohere. In gospel 5, Antixerpur treats with cats and
convinces them to help her found an excavation site. Then, in
gospel 6, she liberates cats at the Battle of Old Teggash. Though
Antixerpur’s rendezvous with cats played no role in the system’s
decision to have her initiate the Battle of Old Teggash, the gospel
claims otherwise. When put to the task of rationalizing the battle, the
event logic repurposed Antixerpur’s affiliation with cats, which had
just been created as a result of gospel 5. With the aid of apophenia,
players can draw narrative conclusions for why Antixerpur might
have chosen to fight on the cats’ behalf. Maybe she struck a deal
with them; they help organize her digging operation, and in turn she
fights to liberate them. Because of the limited number of sultan
properties shared across many events, emergent micro-narratives like
this one are quite common.

Generating Histories ■ 189

TABLE 15.1 an example full set of gospels for a generated Sultan in Caves of Qud.

Number Gospel

0 (sultan initialization; name set to Antixerpur, pronouns set to she/her, birth
region set to the Philosophers’ Quarter of Shaneruk, and domain set to ice)

1 At daybreak on the first day of summer, a geologist found a babe with a freezing
icicle in each hand outside her dig site. She and her fellow geologists adopted the
babe and named her Antixerpur.

2 In 230, Antixerpur assassinated the sultan of Qud over an ordinance prohibiting
the practice of encasing things in ice. She won and ascended to the throne. She
was 21 years old.

3 Acting against the prohibition on the practice of taking a spiritual trek through
the tundra, Antixerpur led an army to the gates of Minekesh. She sacked
Minekesh and persecuted its citizens, forcing them to change its name to
Antixerpurplatz.

4 Acting against the prohibition on the practice of encasing things in ice, Anti-
xerpur led an army to the gates of Darchesh. She sacked Darchesh and
slaughtered its citizens, forcing them to change its name to Antixerpurabad.

5 After treating with cats, Antixerpur convinced them to help her found a dig site
in the Philosophers’ Quarter of Shaneruk for the purpose of excavating ancient
blocks of ice. They named it the Freezing Dig Site.

6 At the Battle of Old Teggash, Antixerpur fought to liberate cats. She wielded
a frosty hammer with such prowess that it became forever known as Frostycus
Catsfriend.

7 Deep in the wilds of the Philosophers’Quarter of Shaneruk, Antixerpur stumbled
upon a clan of bears performing a secret ritual. Because of her reputation for
murdering someone with a dagger made of rime, the bears furiously rebuked her
and declared her a villain to their kind.

8 While traveling near Old Teggash in the Philosophers’ Quarter of Shaneruk,
Antixerpur was captured by bandits. She languished in captivity for 7 years,
eventually escaping to Urashur.

9 While wandering around the Philosophers’ Quarter of Shaneruk, Antixerpur
discovered the Shrine at Mailimrod. There she befriended highly entropic
beings and calculated the distance to a nearby star.

10 In 300, Antixerpur won a decisive victory against the combined forces of the
Jewelers’ Quarter of Biilitum at the bloody Battle of Tappa Cave, though she
lost her prized Frostycus Catsfriend during the course of the conflict. As a result
of the battle, Tappa Cave was so devastated by icy winds that it was renamed the
Freezing Marsh.

(Continued)

190 ■ Procedural Storytelling in Game Design

Antixerpur’s domain of ice, chosen during the pre-historic initialization
step (gospel 0), was also repeatedly incarnated in the gospels, coupling her
with the archetypal phenomenon. Miraculously, she’s found as a babe with
icicles in her hands (gospel 1). Early in her life, she fights against the
prohibition on ice-associated practices: encasing things in ice (gospels 2
and 4) and taking spiritual treks through the tundra (gospel 3). Later, she
founds a dig site to excavate blocks of ice (gospel 5), wields a frosty
hammer during a momentous battle (gospel 6), and historically devastates
two sites with icy winds in her wake (gospels 10 and 11). These ice-flavored
text fragments are manifested by the replacement grammar according to
Antixerpur’s initialized domain, and collectively they act as a narrative
force that pushes through the aggregated events of her life.
The subversion of historical logic is a strange choice, but it dovetails

with Caves of Qud’s themes and far-future, science-fantasy setting. The
game is about engaging with the artifacts of the past without the context
that produced them. It strives to render the present in high definition
and evoke curiosity at how we got here from an obscure past. By
subverting historical logic, the game encodes its own ignorance about
its world history and the full spectrum of its complexities.

CONCLUSION
We now have a framework for thinking about history generation and an
example of its application. Let’s enumerate some questions we can use
to interrogate our intuitions and guide the designs of our future
generative history systems.

TABLE 15.1 (Cont.)

Number Gospel

11 In 302, Antixerpur won a decisive victory against the combined forces of Suppir
at the bloody Battle of Miarravah. As a result of the battle, Miarravah was so
devastated by icy winds that it was renamed Freezingmoor.

12 Deep in the Historians’Quarter of Tunepad, Antixerpur discovered Tarchenna.
There she befriended mysterious strangers and dug into the earth’s strata.

13 In 306, Antixerpur, the Untitled, died of natural causes. She was 97 years old.

Text representing a change in state is bolded. Text generated according to existing state
is underlined. Text generated via random branching or synonymization is italicized.

Generating Histories ■ 191

• In what narrative context will our histories be engaged? Are we
interested in centering history as a process or as an artifact that’s
viewed through a present lens?

• Who’s telling our histories? What are their biases?

• How can we break our prospective histories up into entities and
events?

• What logic do we want to use to relate our events? What
arguments does that logic make about history?

I see procedural generation as a way to explore the mechanics of our
world and the meaning we make out of engaging with them. History’s
importance to our social world is megalithic. It’s threaded everywhere
through our cultural fabric. Turning our procedural eye toward history
is a new beginning in meaning making.

NOTES

1 I highly recommend browsing Epitaph’s publicly available source code
for a simple, accessible example of a generative history system: https://
github.com/mkremins/epitaph

2 Kate Compton. 2015. Tracery. (2015). https://github.com/galaxykate/
tracery

192 ■ Procedural Storytelling in Game Design

https://github.com/
https://github.com/
https://github.com/
https://github.com/

CHAP T ER 16

Procedural Descriptions
in Voyageur

Bruno Dias

Voyageur was born pretty much the exact wrong way for a video
game. It was designed around a technique that I’d become

enamored with and wanted to use and around a tool I developed to
build it.
In late 2015, Emily Short published a piece of generative writing

called The Annals of the Parrigues. A guidebook to a fictional medieval
country, it’s mostly a travelogue of towns and villages, their geography
and culture. Around that time, I started thinking about (and discussing
in conversations with Emily and others) a rough idea of a game that
would use a similar text-generation technique, a sort of interactive
Parrigues. What if you could travel from town to town, reading
a description of the local scenery in each place, trading stories and
bartering with the locals?
Parrigues, along with Kate Compton’s Tracery library, informed the

design of the tool I’d call Improv: a text-generation library specifically
suited to Parrigues-like goals, and the backbone of this Parrigues game
I wanted to make. That game would become Voyageur.
Here’s the brief for how Improv had to work:

• I wanted to generate text from a grammar. I knew from Tracery
that this was a very good way of authoring generative text because
it’s much easier to reason about and structure. It also more or less

193

guarantees that any glaring syntactical errors in the generated text
are the product of a faulty corpus and not some inscrutable ghost
in the machine.

• Those grammars had to be straightforward human-and-machine
readable, probably formatted as JSON. In Voyageur’s actual codebase,
the corpora are all written in YAML for ease of reading, but they get
translated to JSON (which Improv consumes) at compile time.

• Improv needed to be able to keep track of a world state and
generate text that conforms to that world state. That is, if it
describes a village in a desert, it must then not talk about the
river that runs through the center of town. This would enable it to
generate complete coherent descriptions of a place.

This last point is what drove me to build a library specifically for the
purpose; Tracery didn’t really support that kind of functionality. The
techniques that Emily outlined in the appendices to Parrigues would act
as a template, but I’d eventually deviate a lot from her methods.

SETTING THE STAGE
From the start of the project, the idea of one-way travel was at the
forefront of my mind. Mechanically, this was shaping up to be an
explore-and-trade game in the vein of Elite, and the dominant strategy
in these games is to find a profitable trade route and grind it. I didn’t
want that player behavior; I wanted to encourage the vagabond-like
behavior of moving from one port to another, never looking back,
picking cargo up on the way; to me this was always the most fun way
to play those games, and my favorite examples of the genre had ways of
encouraging it. Sid Meier’s Pirates! used wind direction to guide the
player along the trade lanes of the Caribbean, encouraging long loops
around the map, for example.
I also knew that the procedural locales wouldn’t stand up to repeated

visits. Planets in Voyageur are fundamentally static, which works as
you’re only staying on them for a brief moment.
Given that procedural generation gave me “unlimited” worlds to put

in front of the player, I could just cut off the possibility of backtracking

194 ■ Procedural Storytelling in Game Design

entirely. You’re on an immense river delta, carried down by the current;
maybe you can choose which fork in the water’s path to take, and thus
what port to visit next, but you can never go back. Each place you visit
is a moment in time, congealed by your memory of it; you never get to
see it change, because you can never return. Finding the emotional and
narrative complement to this mechanical construction was at the heart
of designing a setting and a story for Voyageur. This image of being on
a canoe drifting downriver is also where the name comes from,
referencing the 19th-century subculture of French Canadian canoe
men who would ferry furs across North America, a working title that
stuck.
Space travel was natural. Hopping from planet to planet, rather than

trudging from village to village, would allow the game to explore wildly
different environments and settings. It also naturally complemented the
procedural nature of it, and the disposability of individual ports; players
would visit many places throughout a play session, and the idea of
exploring the galaxy seemed more resonant than an improbably mean-
dering river system.
In Voyageur, the little vagabond spaceship is equipped with a descent

device, a piece of mysterious alien technology that works in unexplained
ways and to unexplained ends. You pump electricity into it and it
displaces your ship, faster than light, roughly toward the galaxy’s
center of mass. You can steer a little, by accelerating this way or that
while you “descend,” to ensure you “hit” a particular star system on
your way “down.” But all trips are one way.
The devices enable a nomadic lifestyle for a class of voyageurs that

can travel through space much faster than other humans can. Everyone
else travels on warp drives that are huge, expensive, and take months to
traverse a few light years; the descent device will take you to
a neighboring star system in instants. This is a setting in which
humanity has traveled the stars for a long time, having colonized
a large section of the galaxy over the generations. Human expansion,
going outward in all directions, has outpaced how fast humans can
normally travel within a single lifetime; human societies are out of
regular contact with the vast majority of humanity, which they know
of only through outdated information that has been carried down on

Procedural Descriptions in Voyageur ■ 195

ships over decades or even centuries. This description, taken from the
game, exemplifies what you might encounter:

This city is a network of squat domes connected underground, each
one containing a hint of green visible through its translucent
exterior. After dark, the residents vanish from the streets as if
summoned away by some unheard curfew warning. All around,
the signs of ongoing terraforming are evident; every habitat window
is fitted with an AR view of how Earth-like this world will be in
a hundred years. You find the locals here to be mistrustful of
travellers like you, and life is uncomfortably burdened by many
regulations on the use of resources and disposal of waste.

(Voyageur)

Traveling as a voyageur is inherently lonely and melancholy; every
place you see is a place you’ll never see again, as a few weeks of
descent travel are fast enough to take you past the horizon of how far
you could travel in a lifetime by other means. Everyone you meet
regards you as an exotic curiosity but also as suspicious; after all,
what could possibly lead someone to abandon home forever and
choose this lifestyle?

IMPROV: THE TOOL
I built Improv before I started work on Voyageur, partly because
I wanted a proof of concept that was robust enough that I felt comfor-
table embarking on the full project but also because I felt the tool would
be useful as an open-source resource for others, and because it was
ultimately based on someone else’s methodology.
Tracery and Improv are both grammar approaches to generating text

(or, any content that can be expressed as a string of characters, like SVG
images). They both use grammars, sets of rules that define how text can
be constructed. Each rule consists of a name, or key, and a set of
possible completions for that rule, phrases. Say we’re generating descrip-
tions of cats; a rule called color would then include several phrases for
possible cat coat colors: “brown,” “orange,” “black,” “tabby,” “calico,”
and so on.

196 ■ Procedural Storytelling in Game Design

In Tracery (see Figure 16.1), rules contain simple lists of phrases. In
Improv, the phrases under a given rule are split into groups; each group
carries some metadata that describes its contents and then one or more
phrases.
Improv (see Figure 16.2) works essentially like Tracery does. The gen-

erator works on a loop; it’s given the name of a rule to follow as a starting
point. It then chooses randomly from the grammar a possible completion for
that rule (a phrase). It then performs some simple template expansion on the
phrase; the most important functionality is including other rules, which the
generator then fulfills recursively until the entire “tree” of a chunk of text has
been traversed. So wemight start from a rule called “cat_desc” and randomly
select the phrase “This is a #coat_color# cat … .” Tracery then interprets
“#coat_color#” as markup to be replaced by following the coat_color rule, so
that you end up with “This is a calico cat….”
Improv differs from Tracery in choosing what snippet to use. Tracery has

a single “source of truth,” the grammar. Improv has two: the grammar and
the world model. A world model is just a computer-friendly description of an
underlying reality by which the text is bound. Text meant for humans is
messy in a way that’s not amenable to computation. Take this sentence from
a Wikipedia article:
HMS Agamemnon was a 64-gun third-rate ship of the line of the

British Royal Navy.
This sentence implies a ton of domain-specific information that isn’t

organized in any particular way or even present in the text itself. We
could list these as explicit facts:

FIGURE 16.1 How Tracery works, using randomness to choose from possible
values hierarchized in a grammar.

Procedural Descriptions in Voyageur ■ 197

• It flies the flag of the UK.

• It’s a warship.

• It’s a ship of the line.

• It’s a third-rate ship of the line.

• It’s belongs to the Ardent class.

• It’s an 18th-century ship.

• It’s a wind-powered sailing vessel.

• It’s a square-rigged ship.

• It’s armed with muzzle-loading cannons.

We can standardize this information and hierarchize it into ontologies
and create a world model:

• Flag: UK

• Role: Warship

• Ship of the line

• Third-rate

FIGURE 16.2 An idealized view of how Improv works.

198 ■ Procedural Storytelling in Game Design

• Class: Ardent

• Era: C18

• Propulsion: Sail

• Square-rigged

• Armament: Cannons

Before choosing which specific phrase to use to fulfill a rule, Improv
performs a filtering step. Filters, in Improv terms, are functions that take
two arguments: a world model and the metadata from a given group.
They compare the two, returning either a number or a null value.
A null value means “discard this group entirely.” A number added to
that group’s score, or “salience,” is an indication of how appropriate or
inappropriate the group is to the current world model.
This filtering step gives a subset of the grammar that has been

selected with the filtering criteria; normally, that means conformity to
the world model. From this subset, Improv then chooses randomly what
specific phrases to use.
Improv itself has no knowledge of how to perform this filtering, though.

An Improv generator is defined with a purpose-specific set of filters supplied
by the developer. While some filters mark phrases as inappropriate for use
outright, Improv is designed to mostly rely on “soft” filtering: assigning
phrases a score, then using only those phrases that score high enough.
“High enough” is variable; Improv utilizes a user-defined formula to

choose what that means based on the highest score in the sample.
Given m, the maximum salience score in the sample, the culling formula
is supposed to return c, the culling threshold; phrases with lower salience
than c are discarded. This seems like a detail but makes a huge difference
to how a generator behaves. A formula of c = mmakes for a generator that
is always choosing from the most salient phrases available to it and is
therefore not very random. Voyageur uses a formula of c = m – 10. 10,
here, is a value arrived at experimentally by tweaking the generator. When
using Voyageur’s filters and corpus, m tends to hover around 30; this
formula is similar, but not identical, to discarding phrases that didn’t reach
70% of the maximum salience score. Experimentation has shown this to
be a good balance of unpredictability and coherence.

Procedural Descriptions in Voyageur ■ 199

FILTERING, REINCORPORATION, AND SOURCES OF
TRUTH
The heart of the generator is the filter stack. The filter stack started out
as an attempt at generating text that was coherent, stopping self-
contradiction. It evolved into a sort of expression of what I think
makes for a good procedural description.
Voyageur’s planet generator, the most important Improv generator in

the game, eventually shipped using a “secret sauce” of seven filters, four
of which are part of the Improv library, and three of which are custom-
built for Voyageur. Those filters are:

• Mismatch filter: Compares a phrase’s tags to the world model’s
tags and returns null if the phrase’s tags aren’t identical or
a subset of the model’s tags. That is, this filter culls outright
contradictions like incorporating tags marked “tundra” into the
description of a desert world.

• Dryness: Dry as in “don’t repeat yourself.” This is one of the
oddest Improv filters; it outright culls phrases that have already
been used. This is where it starts to get more complicated than
the idealized model in Figure 16.3. As it happens, Improv needs
a memory to do its job properly.

• Full bonus: Gives a salience score bonus to phrases with tags that
perfectly match a tag in the world model. So if a planet is marked
as a desert world, it’s more likely to get desert world phrases in its
description.

• Unmentioned: Gives a salience score bonus to phrases with tags
that aren’t present in phrases that have been used. That is, bias
the generator toward bringing up facets of the planet that haven’t
been mentioned yet. The goal here is to create well-rounded
descriptions that cover as much ground as possible.

• Tweak filter: Custom-built for Voyageur, the “tweak filter” simply
gives phrases salience score bonuses that are hard-coded into the
corpus; some phrases are just arbitrarily more salient no matter
what. More on this hack later in this chapter.

200 ■ Procedural Storytelling in Game Design

• Lensing filter: Another trick arrived at after a lot of trial and error.
Every planet in Voyageur is “seen through a lens,” which might be
its culture, biome, or some other important facet. Phrases that have
the corresponding tag (that is, phrases that mention/reflect this
aspect of the world) have a higher salience. This helps differentiate
the descriptions of similar models; the generator is concerned with
different aspects of a planet each time.

• Bias filter: The bias filter tilts the generator toward discussing
important aspects of the planet being described. It gives a salience
bonus to phrases that mention a planet’s special features, prevail-
ing ideology, or biome; the goal is to make sure that every
description touches on those core aspects.

Compared to this complex mix of filters, the actual grammar is pretty
simple; every planet description is just an optional intro statement
(“Your ship alights …”) followed by some loose phrases about the

World
Model

Grammar Filtering

Culling
Formula

Salience
Culling

Randomness

Filter Stack

Output

Salience Threshold

World Model
State

Phrase metadata

Phrases

Max
 Sali

en
ce

 Sco
re

Sco
red

 Phra
se

s

Ava
ila

ble
 Phra

se
s

FIGURE 16.3 Improv in more detail: culling and filter stacks.

Procedural Descriptions in Voyageur ■ 201

planet. This structure is purposefully loose; I didn’t want descriptions to
be long, and I didn’t want too much structure. I think a way of building
descriptions in which sentences have more of a relationship to one
another is possible, but it requires an approach other than this kind of
grammar.
To cull the grammar according to the world model, Improv is

performing a complex negotiation, balancing multiple factors. But
I haven’t discussed where the world model comes from yet.

WHERE WORLD MODELS COME FROM
When I first started planning out Voyageur, I was really concerned with
the issue of where world models come from, the “source of truth.”
There were, to my mind, two approaches here:

• A priori truth: You generate the world model separately, probably
through some approach that’s just like rolling on a random table.
Then you use the world model to feed the world generator.

• A posteriori truth: You tell the generator to generate a phrase.
Then, that phrase’s tags get added back into the world model,
a process I called reincorporation. Subsequent phrases abide by
this altered world model.

The second approach really appealed to me; it was what Emily used in
Parrigues, and it allowed the corpus to guide the frequency of every-
thing in the game. If I wrote a lot of text for desert worlds, I would end
up with more desert worlds but that would be fine as I’d have a lot of
content for them. I started building Voyageur with the assumption that
this was how I wanted it to work, and reincorporation is a core feature
of Improv (Figure 16.4). All you have to do is turn it on with a switch
as you instantiate a generator.
This plan fell apart almost immediately. For one thing, planets in

Voyageur don’t stand completely alone; they are part of a region, and
the region has its own features (e.g., government, culture). Those
features form a sort of substratum that the planet descriptions would
build on. As I explored the possibilities by actually coding Voyageur,
I quickly arrived at a hybrid model that the shipped game actually uses.

202 ■ Procedural Storytelling in Game Design

Voyageur planets are initially seeded with some basic features—the
planet’s class (desert, tundra, metallic, Venusian, etc.) and some reflec-
tions of the planet’s overarching region. This allows me to sidestep one
of Improv’s weaknesses, the difficulty of expressing more complex logic
about how different parts of the world model relate to one another. For
example, a city world must have a developed, non-agrarian economy;
this kind of logic is handled by the code that “seeds” planets with initial
metadata and not at all by the Improv generator.
It also quickly became apparent that letting the corpus dictate the

frequency of everything didn’t work so well in an actual game. To
balance the game’s economy, I needed to be able to tune knobs directly.
It would be problematic if, to make a certain type of good or event less
available, I had to either delete some lines from the corpora or add
more writing for all other kinds of planets.
A huge chunk of development time was spent writing the corpora

of Voyageur’s planet generator. Procedural generation is, effectively,
a way of getting 200% of the content with 400% of the work. Some
elements of Voyageur’s corpora are scraped from public-access data
(mainly, lists of names), but those lists had to be vetted and reviewed
by a human (viz., myself) before they could be conscionably used. For
the most part, the corpus consists of many snippets of hand-written
descriptions, little individual turns of phrase that I put in place so
that the machine could recombine them. Writing in this style is
difficult; you can’t rely on the natural flow of a paragraph to guide
you as you write, and you have to conform to the way the text is
going to end up being used.
Toward the end of the development cycle, a lot of time was spent

tuning the generator. The planet generator just wasn’t producing good
output; similar planets read too similarly. Building some ancillary
testing tools helped reveal that some phrases were seriously under-
utilized. An Improv generator is, ultimately, very hard to reason about.
Improv taught me that you can write out an algorithm by hand, using
traditional non-ML methods, and still not fully understand why it’s
producing a particular output.
Tuning those systems is slow going. You change the specific mix

of filters and scoring values being used, then generate some planets
to see if the descriptions feel good. Then you run the system

Procedural Descriptions in Voyageur ■ 203

thousands of times and collect statistics to try and corroborate your
feel. It’s maddening. It took me a long time to really understand
what my problem was.
Voyageur’s filters were designed to replicate some good ideas about

how to write a description: have an angle (lensing); bring up the
important stuff (bias); don’t dwell too much on one thing (unmen-
tioned). All of that was working well, but invariably some phrases
would fall by the wayside regardless of the specific balance of factors
I put in place. This was particularly true of phrases that are rarely
appropriate to a planet, phrases that were in effect little gems meant to
show up with low frequency. I spent a long time trying to tweak the
system to achieve a “good” distribution of phrase usage and realized
I couldn’t. Different groups of phrases were being left behind no matter
what I did.
This was the great last realization I had working on Voyageur: You

need to put in some guardrails. I eventually just added hardcoded

Grammar

Word
Model

Output

Filter Stack

Culling
Formula

World model
State

Metadata Reincorporation

Salience threshold

Max sa
lie

nce sc
ore

Filtering RandomnessSalience
Culling

Availa
ble Phrase

s

Sco
red Phrase

s
Phrases

Phrases metadata

FIGURE 16.4 How Improv works, with reincorporation.

204 ■ Procedural Storytelling in Game Design

salience score “tweaks” to several of the game’s phrases. This in effect
gave phrases that were showing up too rarely, or not at all, an artificial
bump. Yes, I could have done that programmatically. But that would
have required another step at compile time or a long and slow “self-
analysis” at game launch, and ultimately it would have been another
automated system that I would need to tune. Manual tweaks worked
very well. If you think the procedural descriptions in Voyageur are good
at all (Figure 16.5), thank them.
Voyageur’s planet generator is a lot more complicated than I initially

thought I’d need. It maintains a history of what phrases it used and uses
that history to make valuations about whether a given phrase is
repetitive. It relies on “guardrails” put in place to tweak the overall
distribution of phrases.
Output that’s too random quickly turns into bowls of oatmeal;

there’s a lot of variability, but that variability doesn’t mean anything.
Voyageur looks to a world model, to an underlying reality that
touches on the game’s other systems to make that randomness
mean something.
I ended up bumping into the opposite problem from bowls of

oatmeal; what I’m calling the “brutalist building problem.” When the
generator is too slavishly dedicated to using phrases with good salience,
when there’s not enough randomness, you quickly start getting descrip-
tions that are too good at surfacing the underlying model; form follows
function a little too well. Planets start to look kind of naked, to lack
ambiguity or flourish; once you’ve seen one farm world, you’ve seen
them all.

CONCLUSIONS
This kind of text generator balances on this razor’s edge: too random,
and there’s no meaning; too much meaning, and there’s no room for
emotional attachment beyond simple recognition of game state.
Whether the output in Voyageur successfully walks that tightrope, I’ll
leave for you to judge. It’s certainly the case that it could be improved
by doubling or tripling the volume of content in the corpus. I don’t
think I went in with naive expectations, but I didn’t realize how much
work would be needed to get the generator in shape.

Procedural Descriptions in Voyageur ■ 205

I’m also a bit dismayed at how much of this is fluffy trial and error
and how little of it seems to be transferrable. I can’t really give you
a methodology for tuning a generator similar to Voyageur’s; I know
what worked for mine, but what worked for mine was probably very
particular to Voyageur’s content and mechanics.
That trial and error did help shape how I think about this kind of

procedural generation. And, in turn, the generator shaped the game.
Voyageur is much more of an ambient, low-agency experience than
originally envisioned. The game was originally supposed to have an

FIGURE 16.5 The Voyageur planet generator, complete with “pre-seeding” and
tweaks.

206 ■ Procedural Storytelling in Game Design

ongoing subgame where you’d glean information from reading planet
descriptions and use that to make savvy trading decisions.
That never really panned out. The only way to make descriptions work

as functional gameplay hints was to make them so dry and repetitive that
players would actively resist reading them. The planet descriptions are
fuzzy and not very informative; that’s what gives them flavor. How to
square that circle of procedural generation that delivers beauty but also
functional information is left as an exercise for the reader.

Procedural Descriptions in Voyageur ■ 207

This page intentionally left blank

CHAP T ER 17

Generating in the Real
World

Mx. Lazer-Walker

Most of this book is concerned with how to use procedural genera-
tion for various storytelling purposes: fleshing out a virtual world,

providing a narrative experience for players to interact with, creating
small digital toys that produce comedy and spontaneity and joy.
Implicit in this is that the worlds we’re creating are digital ones that
live in our pockets, TVs, or desktops. Increasingly, people are creating
narrative experiences that intersect with the real world. Whether that’s
through augmented reality, physical installations such as immersive
theater and escape room games, or traditional transmedia experiences
like ARGs, audiences are hungry for stories told through more embo-
died means.
This chapter aims to explore what it means to combine computa-

tionally driven procedural generation and real-world embodied story-
telling. First, we’ll explore some techniques used by existing
non-digital physical experiences to create room for emergent player-
driven stories. After that, we’ll talk about Computational Flâneur,
a site-specific generative poetry walk that came out of my research at
the MIT Media Lab, as a case study for exploring the technical and
design processes behind blending digital generative systems with the
physical world.

209

HOW DO ANALOG WORKS USE PROCEDURALITY?
Modern discussions of procedural generation and storytelling, by virtue
of the emphasis on games and digital procgen, tend to focus on how
emergent stories can arise from the intersection of complex interactive
systems. But it’s worth looking at the ways locative experiences—such as
immersive theater and site-specific art—create spaces for emergent
player stories without using the systems-heavy approaches we’re used
to in digital games.

The Connecting Power of Embodied Play

It’s remarkable how physical components cause people to feel invested
in procedurally generated content. Party games like Apples to Apples
and Cards against Humanity rely on this phenomenon. Given
a randomly chosen prompt, each player has a hand of possible proce-
durally generated responses and must select the card that makes the best
(or funniest) pair. There is strategy in deciding to hold onto a certain
card for later and in reading the current judge’s sensibilities, but the
process feels analogous to curating a Twitterbot’s output. In a weird
sense, these games are comedy generation systems driven just as much
by the algorithm of a shuffled deck as by the creative input of the
players. And yet, they work. Players feel real agency, and real ownership
over their jokes. People generally feel more connected to the outputs of
systems when they feel their inputs are meaningful. That’s only ampli-
fied when the experience they’re having is one in which they are
physically embodied in that experience.

Case Study: Sleep No More

Sleep No More is an immersive theater piece by Punchdrunk, currently
running in New York City and Shanghai. It’s ostensibly a (non-verbal)
retelling of Shakespeare’s Macbeth and Hitchcock’s Rebecca, but you’d
be hard-pressed to glean that if you weren’t already familiar with their
plots. Sleep No More is a freeform experience that takes place in “the
McKittrick Hotel,” a warehouse in Manhattan more than six stories tall
and spanning a full city block. The show is a “hyperdrama,” a term
meant in the same sense as hypertext: as characters move around the
hotel in real-time, you’re also free to move around the space. For the 2

210 ■ Procedural Storytelling in Game Design

to 3 hours you spend in the McKittrick, you choose where to go and
what to see.
The appeal of Sleep No More is the ability to go anywhere and do

anything. If you want to follow Macbeth for two hours, you can do that,
hang out at the bar, or even just go to the library and read. All of those,
the promise goes, are equally valid Sleep No More experiences.
In one sense, Sleep No More is a strictly plotted piece of theater.

Actors’ paths through the McKittrick are pre-planned, their movements
and interactions as precise and interconnected as a mechanical clock.
But the sheer size of the physical space affords a similarly large narrative
possibility space: no two players will have the exact same journey. Since
no one player can experience everything, a critical part of the joy of
Sleep No More is the informal post-show debrief, when you inevitably
head to a bar or coffee shop with your friends to discuss the adventures
you’ve been on and to hear stories of what you might have missed.
Such a brute-force approach to emergence fails in an infinitely

reproducible videogame—note the sheer volume of spoiler wikis and
Let’s Play videos that accompany every open world videogame. How-
ever, it succeeds wildly in an experience that costs $90+ for a bounded
2–3 hour experience in a specific warehouse in Manhattan.

Case Study: Then She Fell

Even within the world of immersive theater, other paths exist. Then She
Fell, by Third Rail Productions, is another theater piece in New York.
Taking place in a former psych ward in Williamsburg, it intertwines the
stories of Alice’s Adventures in Wonderland with the real-world relation-
ship between Lewis Carroll and the young girl Alice Liddell.
Unlike Sleep No More, Then She Fell is largely linear. Each performance

has room for only a dozen audience members, each of which is taken on an
intricately planned guided journey through scenes and set pieces. Each
attendee at a given performance will have a different experience, but two
audience members at different performances with the same random seed
(if you will) experience the same scenes in the same order.
Counterintuitively, this linearity affords a different sort of player

story. This mechanical shift means the majority of the audience’s
experiences can be one-on-one (or close to it) interactions with actors.
The result is that the individual moments that stick out in players’

Generating in the Real World ■ 211

minds feel far more vividly personal. A live actor responding to what you
say and do in the context of a single scene and set of interactions doesn’t
meaningfully shape the overall story arc but does stick out far more
clearly in your memory. If a big part of immersive theater is the post-
show debrief with friends, this optimizes meaningful shareable moments.

Case Study: Janet Cardiff

Part of how Punchdrunk is able to pull off what it does with Sleep No
More is the complete control they have over the space. Much like game
designers creating digital worlds, the players have control over every
individual sound, sight, and even smell of the environment you’re
experiencing. Similarly, even though Sleep No More is heavily plotted,
the use of live actors means there’s room for give and take as actors
respond naturally to the audience.
The sound artist Janet Cardiff has neither of these luxuries in her

work. In the 2000s, she built a series of audio walks, half-hour experi-
ences that intermingle the artist speaking to you with a complex
binaural soundscape over an actual real-world space. Her 2004 piece
Her Long-Black Hair—available online (https://phiffer.org/hlbh/) thanks
to the archival work of Dan Phiffer—has you walk through part of
Central Park in New York City while she tells you stories.
More than being about the words she says, her pieces are about the

binaural soundscape that surrounds you. Early on, you hear police
sirens blare behind you on 59th Street and aren’t sure whether the
sirens are there in real life or just in the recording. You hear a couple
arguing or a child laughing and similarly question what is real and what
isn’t. This isn’t a living, breathing piece of theater like Sleep No More.
It’s a static piece of recorded audio, exactly the same for every partici-
pant, whether today or a decade ago.
Yet her audio walks feel special and deeply personal. My time with

Cardiff’s work felt like it was an experience meant just for me and
meaningfully changed my relationship with that specific corner of
Central Park. There’s something ineffable about an experience designed
for a specific space, more so than a location-based game like Pokémon
Go; this is fiction specifically built to shape your relationship with
a specific place. I can’t visit that corner of Central Park without my
own memories entwining with those of the Cardiff walk.

212 ■ Procedural Storytelling in Game Design

https://phiffer.org/

This largely works because of her phenomenal use of psychology.
I mentioned earlier the otherworldliness of hearing a couple arguing
behind you and not knowing whether they are physically present.
Because the positional audio is pre-baked in, if you turned your head,
the audio would turn with you, and the illusion would be broken. But,
miraculously, nobody turns.
How does she do this? At the most basic level, she explicitly tells the

player to not turn around. More than that, the authored narrative she tells
is one of regret for the past, with a core emotional theme of not looking
back. At one point, she even tells the story of Lot’s wife. The result is an
experience where players are pre-disposed against doing the thing that
would break the illusion of the technology. It feels like a magic trick, but it
works stunningly well. Similarly, it would be easy for Cardiff’s wayfinding
instructions to fail and leave you lost if you were walking at the wrong
speed. That doesn’t happen, though, because she uses similar framing
techniques to ensure you’re walking at precisely the intended pace.
For the most part, these are design tools used to provide a consistent

experience. They logistically ensure that players are in the right place at the
right time, and they emotionally provide a set of “special” experiences that
feel tailored to you despite being static. Within this framework, Cardiff is
able to play on the randomness and unpredictability of the public physical
space to create room for emergent synchrony with her static recorded
audio. Specifically, she is able to play off three types of elements:

1. Things that won’t change

When Cardiff plays police sirens behind you, she makes a safe assump-
tion. As long as there are cars in Manhattan, there will be police sirens on
59th Street. Even though this should be fairly uninteresting—they’re only
police sirens!—the fact that you recognize it as being specific and
authentic to the space resonates deeply with you. Because you’re physi-
cally there, you feel like she’s responding to the experience you’re having.

2. Things that are meaningful whether or not they change

At one point, she has you walk through the Central Park Zoo, and
she references a polar bear. By the time I did the walk, there was no

Generating in the Real World ■ 213

polar bear enclosure there; that specific polar bear was likely long
dead. It still worked, though, and works either way. If the polar bear
had still been there, that would have felt meaningful, as if she knew
the space I was inhabiting. Even though the bear wasn’t there, it still
felt meaningful, a brief meditation on the transience and shaping
of public spaces. Either way, it felt like a special experience built
for me.

3. Things she can’t possibly know about

If the player story of a roguelike is one that emerges out of the
intersection of complex systems, and Sleep No More’s story comes out
of a combinatorial explosion of interlocking authored content, Cardiff’s
work explores the intersection of a single authored narrative strand and
the infinite random noise of public space. This is simultaneously more
open ended and more limiting than the other forms we’ve explored. Of
the times I’ve experienced Her Long Black Hair, the unique moments in
any given playthrough were often insignificant—the weather or the
number of people there. Sometimes they were more drastic, like the
time I had to reroute because Keanu Reeves was shooting a film by the
Bethesda Fountain. Although Cardiff’s dialog doesn’t and can’t explicitly
reference these, carefully chosen open-ended language can provide
a framework where even these little details still feel meaningful and
intentional, as if they were conscious design decisions.

WHY BOTHER TO BRING THE DIGITAL INTO THE
PHYSICAL?
If existing embodied experiences are already able to do interesting
things with procedurality, why would we bother mucking around bring-
ing software into the mix? Dealing with the intersection of the digital
and the physical is a pain to deal with and debug. I’m certainly not one
to claim that there’s something inherently superior about digital works
or that bringing technology into embodied experiences is something to
do merely because we can.
The experiences we’ve discussed are all fairly baroque. Sleep No More

and Then She Fell are large-scale theatrical endeavors requiring custom

214 ■ Procedural Storytelling in Game Design

built-out spaces and dozens of live actors and as a result command
extremely expensive ticket prices. The relative impermanence of immer-
sive theater also means that, unless you’re lucky enough to build some-
thing as wildly successful as Sleep No More, a few years in the future
your work will largely live on in the form of static documentation. This
is regrettable for individual creators, but even worse it inhibits larger
design discussion around this sort of work.
Design communities emerge when people have a shared body of

work to discuss. Traditional theater relies on strong local commu-
nities; digital art and games communities are more distributed, but
infinitely reproducible works mean that conversations can happen
across time and space. Finding ways to create more automatable
forms of immersive theater is one way to create works that can be
longer-lasting.
Works like Cardiff’s don’t have these problems, but Cardiff’s work is

singular. The amount of effort to make a static audio piece like hers
function is staggering; mixing in already-well-understood digital ele-
ments to create more interactive works that capture what’s beautiful
about hers can lower the barrier of entry to making more things like
that, without requiring people to become experts in binaural audio
production and psychology.

AN ATTEMPT
My research at the MIT Media Lab focused on how we could blend
these existing situated storytelling techniques with the sort of proce-
dural storytelling used in modern digital games. How could Cardiff’s
audio walks be improved by weaving in a sensorial awareness of the
world via the player’s smartphone? How can techniques taken from
interactive fiction be used to provide experiences as transformative as
Sleep No More, but for free in a public space instead of requiring hordes
of live actors and a custom built-out set? How can all of these
experiences more meaningfully shape our experiences with public
spaces? In broad strokes, I was interested in building site-specific
interactive radio plays that used smartphone sensors as a means of
input. Rather than focusing on discrete player choices, I was particularly
interested in the effect more subtle morphing of a story could have.

Generating in the Real World ■ 215

Early discussions focused on a short play set in a major art museum.
One dynamic we wanted to explore was having a linear, authored play
respond to the player’s environment; the arc of the story you were
listening to would be the same no matter where you were in the
museum, but the specific dialog would be subtly shaped by where you
chose to be, peppered with references to the specific art around you and
influenced by the dynamics of that space.
More interesting than that dialog layer would have been the back-

ground layer of other overheard conversations, a la Cardiff’s binaural
soundscape, playing on the voyeuristic joy of listening to strangers at
museums. These would be tailored for you based on whatever sensor
data we could gather: you’d hear different stories if you were there on
a weekday or a weekend, winter or summer. There’d be audio snippets
you might only hear if it was raining outside or on a particularly
busy day in the museum. The goal wasn’t to create something where
completionists felt the need to (or even the possibility to) “collect” every
possible story but rather to create an experience where the procedurally
surfaced authored content felt so in sync with the physical space that,
like Cardiff’s work at its best, you weren’t sure what was real and what
was fiction.
In principle, none of this seems too far afield of what’s already been

done in the digital world. Conceptually, the procedural generation
techniques for modifying story flow are similar to others described in
this book. On a technical level, the scripting language I built for
prototyping was similar to other modern choice-based interactive fiction
tools. But the hypothesis was that building these sorts of interactive
experiences in a physical space, based on sensor data, would create
a substantively different experience.

Designing for New Platforms: Start Simple

Creating experiences for novel interfaces usually requires a bottom-up
approach rather than a top-down one. Instead of defining what the end
experience should be and working backwards, the best way to deal with
“alt control” games is generally to start by prototyping around low-level
interactions to see what works, eventually building up larger systems
and interaction patterns to support what’s intrinsically satisfying about
the moment-to-moment experience. Even though we had a high-level

216 ■ Procedural Storytelling in Game Design

vision for a piece, we began with low-level experimentation about what
was possible and, more importantly, what was legible to players.

What’s Possible?
In some cases, a technology will likely be viable in the future but isn’t
quite there today. My work specifically eschewed traditional screen-
based augmented reality (think Pokémon Go) for this reason. The idea
of overlaying visual content on top of the world is interesting; in
practice, until we have dedicated AR glasses (and maybe not even
then!), the awkwardness of staring at the world through a handheld
slab of glass was at odds with the desired goal of connecting people to,
rather than isolating them from, the world around them.
As another example, I was initially very interested in using head-

tracking positional audio, but experiments using the phone’s motion
sensors proved overly finicky. If a phone is sitting in a purse or
a pocket, you can pretty reliably determine body orientation, but
people will naturally shift their heads, not their entire bodies, to listen
for new things. Screen-based AR prototypes could get players to
subconsciously move their phones in sync with their head movements,
but as described above, visual AR has its own set of problems. It seemed
like positional audio was a problem best tackled via Janet Cardiff-style
design solutions rather than technical ones.
These examples are all based on users providing their own smart-

phones, since that’s what we were designing for. Head-tracking, for
example, is pretty easy if your setup allows you to adopt a computer
vision solution or if you can somehow place motion sensors on your
players’ heads (like, say, a VR or AR headset). In our case, though, other
design constraints meant that technical solutions that could work in
other situations were off the table to us.

What’s Understandable by Players?
A modern smartphone has a dizzying array of sensors. For most of
them, the question is less what we can do with them and more what
players can understand about them. An iPhone’s altimeter, for example,
can tell relative vertical distances well enough to distinguish what
specific step of a staircase you’re on. One prototype I built was for
a park that’s essentially a giant vertical set of stairs, with the hope that

Generating in the Real World ■ 217

I could use that data to pace a relatively non-interactive story to the
player’s speed. On a technical level, it was very easy to use altimeter
data to position the player along the track of climbing the stairs. Since it
was one dimension instead of two, in many ways it was easier to deal
with than GPS or other forms of location.
In practice, the data was too finely grained. Players didn’t really

have a mental model for a computer system responding to their
movements at a per-step level, rather than, say, just reacting when
they finished climbing a specific set of stairs. Similarly, it was far
more legible when I used the altimeter for a prototype built for
a multi-story building, telling the player when to get on or off the
elevator. The technology worked great, but we didn’t have the design
vocabulary necessary to take full advantage of the granularity of the
data we had.
This is a general theme in a lot of my experiments. The prototype

that turned into Computational Flâneur (described later in the chapter)
began with the assumption that how quickly the player was moving
through a space would be an interesting input into a procgen system,
for example, but it became quickly apparent that players had no mental
model for their moment-to-moment movement speed meaningfully
affecting a system at any level of complexity beyond “the music gets
more intense when you’re running than when you’re walking.” As
a result, I ended up throwing out “movement speed” as an input for
that piece, despite its being easy to track accurately with consumer
smartphone GPS.

CASE STUDY: COMPUTATIONAL FLÂNEUR
After all of those early prototypes and design lessons, it became clear
that the next immediate step wasn’t jumping straight to a narrative
piece, but rather creating something more textural to play around with
how procedural generation felt in a space. The result was a generative
poetry walk, called Computational Flâneur, built for Fort Mason in San
Francisco. As you wander through Fort Mason, your phone makes up
poems based on where you walk and reads them to you. Walk by the
cannons and you’ll hear poems of war; walk by the waterfront and
you’ll hear poems of the sea.

218 ■ Procedural Storytelling in Game Design

Crucially, Computational Flâneur doesn’t aim to produce actual good
poetry. It’s designed to create simulacrum of the poetry listening
experience, putting you in the sort of contemplative state that fine art
appreciation often can. But it’s also designed to serve a similar role to
doodling: it’s interesting enough to pull you out of your own thoughts
but not interesting enough to hold your attention. Half-attentive, your
mind gets distracted by the environment, allowing you to appreciate the
present moment in a beautiful physical space more than you would if
you were distracted by your own thoughts. It’s guided meditation by
way of nonsense.

Actually Developing in the Real World

Digital procedural generation is great because of how incredibly tight
software feedback loops can be. Prototyping a system and getting immedi-
ate feedback on whether it’s doing what you intended is usually orders of
magnitude shorter with digital systems than with physical ones.
Making digital/physical hybrids like Computational Flâneur is a more

complex problem. Even though you’re writing software, there’s no
avoiding prototyping and playtesting in the actual world. But while
some types of playtesting categorically need to happen in the flesh,
others can be done digitally. It’s worth taking the time to design your
design system so that you can test any given part of the system with as
minimal fuss as possible.
For Computational Flâneur, that meant a few different things:

1. Being able to run the neural net-powered generator on a computer
without GPS. For the poetry walk, there was a series of map
regions, each of which had a set of keywords. Each snippet of
poetry was generated using a randomly chosen keyword as the
starting text. I abstracted this to being able to generate output for
a given keyword, so I could manually generate poetry on demand
for any given snippet.

2. Being able to walk around anywhere and have poetry play. If
I wasn’t in the physical park, the app would generate random
regions and act as if they were real regions. This let me hear the
poetry in context: as I walked, I’d hear poetry snippets that were

Generating in the Real World ■ 219

thematically coherent, and then I’d hear the shift as I moved to
a different region, without having to physically be in San
Francisco.

3. Finally, it was important that, at any given time, the game was
deployable to an actual iOS device that could physically run in the
park itself. I could more quickly test whether the poetry seemed
sensible in a vacuum, sure, but it was impossible to gauge the
experience of hearing the poetry in the park itself without physi-
cally being there.

Staging playtesting and prototyping like this meant that I could do
most of the work without being in the physical space, which was
vitally important for maximizing the amount of work and the number
of discrete iterations the piece was able to go through before its
premiere.

The Boundaries between GPS Regions
A concrete example of a design consideration that could only be
prototyped in-person is the way we transition the player between GPS
regions. As described earlier, the heart of the piece’s technical imple-
mentation is a series of geofences. When you’re inside a geofence, you
hear snippets of poetry that relate to that geofence. Some geofences are
nested or have overlapping, and in those situations the output is a blend
of the two with some weighting applied. But what is the subjective
player experience of crossing the boundary from one region to another?
At first I assumed this was a homogeneous problem, but the solution
ended up needing to be different for different boundaries.
In Fort Mason, there is in fact a “fort” area. It’s home to the largest

parking lot in the park, so I assumed a lot of players would begin the
piece there. One of the most straightforward ways to get from there to
the main grassy area is to climb a set of stairs, but the staircase is fairly
long and not that visually interesting; in early playtests, getting players
to go up it was difficult, which made for a frustrating experience for
them. Creating a distinct geofence region for the staircase turned out to
be an effective way to convince players they were going the right way,
and that exploration was a rewarding experience.

220 ■ Procedural Storytelling in Game Design

Conversely, there are a bunch of sub-regions within the fort that
I didn’t want players to even consciously notice. I wanted to generate
poems, for example, that referenced when players were standing by the
waterfront, but I wanted that transition to be a subtle one rather than
an explicit threshold crossing. This meant doing nothing other than just
letting the abutting regions each generate its own content.
As a final example, that grassy area above the fort neighbors a walled

community garden. I didn’t necessarily want to explicitly shepherd
players into the garden, but I did want to amplify the feedback systems
in place: players should be aware that something new awaited them if
they kept walking, whether or not they did. This was especially impor-
tant since the garden only has one entrance, so getting in requires
conscious effort. The garden has a distinct soundscape: aside from the
poetry, I swap out the subtle background audio of children playing for
birds chirping, so that shift happening would be obvious. All I needed
to do here was make the geofence for the garden slightly larger, so
players would hear that shift before being properly within the garden
walls; that proved enough.

A Side-Note: Neural Networks
Most of the procedural generation methods used in games and gen-
erative art tend to involve a human author providing opinionated
scaffolding within which a computer can generate content. Whether
you’re writing a Tracery grammar or a procedural level generator,
you’re usually trying to find the right balance between hand-authored
and computer-authored content.
Computational Flâneur instead generates all of its poetry via other

means: an algorithm is trained on a large corpus of existing text (mid-
20th century poetry in our case) and told to generate new text that
looks like the existing text.
This sort of approach is common. Even if you’re not formally

familiar with Markov chains, you’ve likely seen “ebooks”-style Twit-
terbots that generate new tweets in the style of another account via
a Markov chain. At a high level, a Markov chain probabilistically
samples an existing corpus of text to generate new text. Given an
input of a 2- or 3-word sequence, it tells you what word is statistically
likely to come next. Repeat this a dozen times, with previous outputs

Generating in the Real World ■ 221

as new inputs, and you have an original sentence that statistically
resembles the original text.
Computational Flâneur doesn’t use a Markov chain, but rather

a character-based neural network (so-called “deep learning”). At a high
level, this approach isn’t that different from a Markov chain. The lower-
level math of how to train a neural network differs, but from an
aesthetic standpoint, you can think of these sorts of neural networks as
essentially Markov chains on steroids.
Most importantly, a neural network is capable of having a broader

sense of context. You can give a Markov chain more context by looking
at longer sequences of previous words, but when you do so it tends to
produce less-interesting output: if you ask a Markov chain with
a relatively small data set “what word is most likely to come after this
sequence of 5 or 6 words?,” there are far fewer potential answers than if
you only give it the previous 2 or 3 words.
A neural network, on the other hand, excels at looking holistically at

the whole context of your corpus while also more heavily weighting the
most recent generated text. This results in being able to produce text
that seems superficially more “real,” without degenerating into simply
parroting back exact phrases from the training set. It’s possible to, say,
train up a char-rnn on a corpus of C source code and watch it spit out
code that, while still nonsense, is syntactically valid to the point that a C
compiler will accept it.
Text generated this way, via either Markov chain or neural net, tends

to reveal itself as fake almost immediately and gets repetitive rather
quickly. This style of procgen is a fairly poor fit for situations other than
when you desire a “bot-like” aesthetic, which is why you tend to see this
approach most often limited to things like Twitterbots.
In the case of Computational Flâneur, though, this is exactly what

we’re looking for. My goal was to create not something believable as
actual poetry, but rather a series of words to paint the broad brush-
strokes of “you are listening to poetry.”

A System to Create Moments of Synchrony
This neural net-based poetry generator is a lot like a Twitterbot in that
both are, in a sense, slot machines. They’re variable reward systems that
usually spew out relatively uninteresting content but every so often

222 ■ Procedural Storytelling in Game Design

produce something deeply interesting and meaningful. What makes that
work in the context of Computational Flâneur is twofold.
On a logistical level, when joyful moments of synchrony work, they

really work. Seeing a Twitterbot make an unexpectedly coherent joke is
one thing; hearing a poetry robot recite a couplet that directly refer-
ences what you’re seeing in the real world feels like magic, and all of the
sensor research we’d done beforehand is focused on increasing that
number of hits.
On a thematic level, the structure of Computational Flâneur means

that those moments of synchrony serve to do more than just delight.
Structurally, they’re akin to a meditation gong: that surprise and delight
pulls you out of your thoughts and deepens the connection you have to
whatever physical elements of the park triggered that joy.

Cadence
Yet another useful lens for analyzing procedural generation systems
is what sorts of larger emotional arcs you can create with them.
People using procedural generation for more traditionally narrative
experiences are typically placing their generated content within larger
framing structures and thus have a large range of possibilities.
Twitterbots, on the other hand, are endless streams of content.
There’s the occasional rare meta-arc of a bot, as in the case of the
public discovering the human authorship behind @horse_ebooks, but
the way Twitterbot content is consumed means that it’s very difficult
to do anything other than have each piece of generated content be its
own isolated unit See also: Chapter 27, “Things You Can Do with
Twitterbots.”
With narrative games, there’s an expectation that if users have been

playing for a while, they’ll save, quit, and return later. We as creators
need to make sure that any individual play session is satisfying, but
we can design an overarching narrative arc without caring about
whether it’ll take an individual player one sitting or 10. That doesn’t
work in the real world, where it’s pretty essential that one “session” is
a complete experience. You can design an experience that lasts over
multiple visits to the same space, sure, but the effort required to
physically return will generally make each visit feel much more like
a distinct experience.

Generating in the Real World ■ 223

I wanted Computational Flâneur to be an experience where people
could show up in the park, start anywhere, walk anywhere, and spend as
much time as they wanted on it. As a result, the arc of a single session
of Computational Flâneur felt far more like a Twitterbot than that of
a narrative experience. Early attempts to overlay in background music
to try to guide players toward some sort of emotional arc or conclusion
felt so clumsily misguided that it wasn’t even worth thinking about, say,
whether there were ways to analyze player focus and interest in order to
subtly nudge players to wrap up their walk.

The Effect of Cadence on Repeat Visitors
In theory, this Twitterbot-like flexibility gives the piece far more longevity
and replayability for any individual player. Much as you can dip into
a Twitterbot’s feed whenever you want to see something new and delightful,
this design makes it easier for players to come back to the park again and
again and get something new and valuable out of the experience every time.
In practice, though, this didn’t really happen. Most players’ experi-

ence with Computational Flâneur was limited to visiting Fort Mason
once and having a single journey. Encouraging repeat visits is (presum-
ably) a combination of making it low-friction to come back (as is the
case with a Twitterbot) and giving players active reasons to do so.
For the former, Fort Mason itself was likely part of the problem. For

the people I know in San Francisco who enjoy this sort of experience,
Fort Mason just isn’t part of their daily life. It’s not particularly out of
the way, but it’s just not a place the target audience visits unless there’s
an event actively bringing them there.
Another concern is that there wasn’t anything about Computational

Flâneur that actively rewarded repeat visits. I could imagine a version of
the piece that encourages players to come back, especially since Fort
Mason is so relatively easy to get to within San Francisco, but the
version of the project that shipped didn’t really have anything drawing
people back other than the promise of more of the same.

BUT I JUST WANT TO KEEP MAKING DIGITAL THINGS!
Even if you have no interest in designing physical experiences, most
procedural generation systems—particularly those that exist to aid

224 ■ Procedural Storytelling in Game Design

storytelling!—don’t exist in a vacuum. The challenges of integrating
digital procedural generation systems with physical systems are in many
ways extreme versions of the sorts of challenges you normally face with
digital procedural generation.
We’ve discussed how to ensure that the weird inputs feeding your

algorithm are understandable by players, rather than making the system
feel purely random and how to manage other elements of the world that
players may perceive as inputs but can’t control and can’t even be fully
aware of. We’ve talked about the importance of breaking down your
design problems into smaller composable sub-problems that can be
built and tested more easily in isolation. We’ve even talked about ways
we can eschew digital algorithmic systems entirely, creating the same
sort of interesting emergent storytelling behavior we’re after purely
through static analog means.
Of course, there isn’t a strict binary split between “digital” and “physi-

cal.” Many of the approaches we’ve discussed are essential for building
work on one extreme of the spectrum, just as they’re not strictly necessary
for purely digital works. But designing procedural generation systems that
use sensor data or other forms of non-traditional inputs and output can be
a lot subtler than experiences like Computational Flâneur built for walking
around gigantic physical spaces. With anything like that, it’s useful to keep
thinking about how we can use all of the tools in our tool belt to provide
delightful new experiences for players!

Generating in the Real World ■ 225

This page intentionally left blank

CHAP T ER 18

Dirty Procedural
Narrative in We
Happy Few

Alex Epstein
Compulsion Games

We Happy Few is a survival adventure game set in a 1964
England that lost World War II and was occupied for four

years by the Germans. Now, everyone is taking happy pills—Joy—to
forget the terrible things they did back then. You, the player, are not.
So you have to flee. The world of We Happy Few is a small archipe-
lago, of which the biggest islands are procedurally generated (Figure
18.1). In the playthrough of the first player character, Arthur, the
ruined Garden District is two islands, and Hamlyn Village, where
happiness is obligatory, is two more islands. (These numbers vary in
the other playthroughs; it’s a conceit of the game that big things
change between playthroughs because the characters remember things
differently.)
What’s so challenging about telling stories in a procedural sandbox?
On one level, it’s not. As in most single-player story-driven games,

our three playable characters’ stories make their major emotional turns
in cinematics that play in a set order in a set sequence of locations.
The train station may be north or south of the military camp, but we
always send you to meet Ollie in the train station first; you can’t even
get into the Victory Memorial Camp until after that. Encounters are

227

linear, too, controlled in Unreal by blueprints and map triggers that
are enabled in a certain order.
So what am I even doing in this book?
Encounters and player character stories carry the most meaning when

they are part of a rich, dense, immersive world.
We create a world through art, of course, and game mechanics, and

through environmental narrative—letters, journals, graffiti, signs, and
other building blocks of story—as well as systemic dialog—greetings,
taunts, passive (overheard) conversations. When the people and places
that populate the world have their own stories, the world feels particu-
larly rich, dense, and immersive.
In a procedurally generated world, we don’t know which bits of

narrative the players are going to experience in which order. We don’t
know where they’ll go or when. This is partly true of a handcrafted
sandbox. We can guess that players will hit the near stuff first, but
really, we have no idea what they’ll do (except break the game if they
possibly can).
Okay, we could try to force each story in the world to unfold linearly,

using those pesky maps and blueprints. But it would be impossibly

FIGURE 18.1 An example generated island of We Happy Few.

228 ■ Procedural Storytelling in Game Design

restrictive for everyone and an implausible amount of work. More
interestingly, the world wouldn’t feel real. In life, we get stories in
anything but chronological order. Their bits are out of order; some
bits are missing. The information we get may be anywhere from
contradictory to entirely false. To make sense of them, we have to
interpret.

YOU HAVE A SUPERPOWER
Fortunately, people are extremely good at making stories out of faulty
information. Too good: many cognitive fallacies exist because our brains
are hardwired to make stories out of the various things we see, whether
or not they have anything to do with each other. The Gambler’s Fallacy,
for example, makes us think that a series of wins means the next throw
of the dice will also likely be a win. Or that a series of losses means
we’re “due” for a lucky break. See also the Conjunction Fallacy,
survivorship bias, the No True Scotsman assertion, post hoc ergo propter
hoc, and so forth.
I believe that human beings are hardwired to make stories out of

facts, just as we’re hardwired to learn language. I wouldn’t be
surprised to learn that there’s the equivalent of Broca’s area for
stories in the human brain. We are built to interpret the real world
through stories. We are built to know how to feel through stories.
A good story makes you feel something emotionally. I would even
say that in a game it is very hard to make the player feel something
other than frustration, boredom, flow, and satisfaction without
a story.
Music and art can carry emotion on their own, of course. Music

even seems to have its own part of the brain: some people who lose
their ability to speak because of certain brain injuries can still sing
songs with lyrics. Generally games use music to underscore emotions
rather than to do the heavy lifting on its own, but a game without
a story could rely on music to carry the emotions. Unfortunately,
games are not used to asking players to make stories for themselves.
Let’s face it, these days, players are not often asked think very hard
about stories. They are used to puzzling out the best approach to
a devious puzzle or honing their combat reflexes, but they have come

Dirty Procedural Narrative in We Happy Few ■ 229

to expect that any bit of narrative they don’t completely get will be laid
out for them and explained.
Fortunately, we can rely on the superpower all human beings have

of making stories out of disjointed facts. To populate our world with
NPC stories, all we need to do is make a bunch of pieces of narrative
and count on the players to put them together. Obviously, the pieces
of narrative need to be part of a story, and we need to provide enough
of that story to allow the players to find it, even if they missed some
bits of it.
Obviously, they need to be good stories. A good story has
a character we care about,

with an opportunity, problem or goal,

who faces obstacles and/or an antagonist and/or character flaws,

who has something to lose (jeopardy), and

something to gain (stakes).
Obviously, they need to be stories that can be told out of order,
meaning that their emotional value isn’t destroyed by the wrong order.
They can’t depend on pacing, suspense, or surprise. We need to train
the players of our game that we’re not going to make all of the stories
for them, and they should feel free to create.

MENTAL WORK MAKES EMOTIONAL ENGAGEMENT
We use what I call “dirty narrative,” which demands interpretation from
players. You give players pieces of narrative and let them figure out
what story they belong to and how to put everything together. Dirty
narrative is a handy approach even in a handcrafted game world with
an enforced linear progression. But in a procedural sandbox, it is
particularly necessary. When you let the player fill in the gaps between
your bits of narrative, you make the player an active consumer of
narrative, an investigator rather than a passive viewer. Paradoxically,
the more mental work they do, they more emotionally engaged they
become. Good dirty narrative stories have the same elements as all good
stories. What distinguishes them is that, instead of trying to make as
clear as possible what happened to whom, where, when and how, they
intentionally demand interpretation.

230 ■ Procedural Storytelling in Game Design

PULL VS. PUSH
Some of the elements of dirty narrative are:

a. translucent lies

b. absences

c. mysteries

d. inconsistencies

e. tangents

All of these are “pull” story telling. I learned as a screenwriter that the
least effective way of telling the audience anything is to just tell them.
Pushing information at the audience pushes them away. But if you can
get the audience to ask the questions before we answer them, then the
audience pulls themselves into the story.
How did we use these in We Happy Few?

a. Translucent Lies

A translucent lie is a lie you can see through to the truth. What makes it
translucent instead of transparent is that it tells you something about
the liar, as well. For example, in We Happy Few, every proper decent
citizen takes a happy drug, Joy (Figure 18.2), and wears a happy face
mask to seem to be smiling. There’s a jolly television announcer who
always smiles and has nothing but good news.
You easily see through the lie to the truth. A society that insists

that everyone is happy is probably not terrifically happy. (Is there
anything creepier than being in a group of people who are all smiling
all the time?) You also know something about the liar. This society
must be hiding something terrible, or it wouldn’t need to pretend
happiness. (Funnily enough, in our development of the game, the
masks and drugs came first. Our studio head wanted a game where
everyone wore masks and took drugs. The lost war, the occupation,
the fake “victory,” the themes of memory and denial, all came up as
we retro-engineered the world and its story from those two game
mechanics.)

Dirty Procedural Narrative in We Happy Few ■ 231

b. Absences

There are no children in We Happy Few. That’s not strange by itself:
most video games don’t have children. Children come in all different
sizes, which makes them a pain to model, and people in real life get
terribly upset when a game allows players to kill them. We didn’t want
to just not have children; we wanted a palpable absence of children. In
our backstory, all the children of Hamlyn Village were sent away during
the German occupation (Figure 18.3). So, in the Village, adults jump in
puddles. They play Simon Says. The TV announcer encourages you to
join in, because “if you don’t, who will?”
In the burned-out Garden District, there are graffiti drawings of children

with their faces scratched out. A crazy woman mutters, “What am I going
to do with all the little shoes?” Someone has tucked spoons and plates into
bed with children’s toys. Maybe that abstraction is not powerful enough.
“One death is a tragedy; a million is a statistic,” as Stalin said. You quickly
find the secret hidey-hole of one child, Sebastian Dainty, whose parents
kept him off the train, along with their increasingly anguished letters after
he failed to eat the birthday cake they left.
You can’t see a black hole. But if there’s enough stuff around it, you

can’t miss that it is there. Stars cannot orbit around nothing. Likewise,

FIGURE 18.2 Jack with Joy, in We Happy Few.

232 ■ Procedural Storytelling in Game Design

we can make the player spot the absence in our fictional world by
showing how it distorts the things we can see.

c. Mysteries

Some mysteries are best left unsolved.
Our TV announcer jokes about Foggy Jack. Of course he doesn’t

exist. Women have certainly not been found dead in the street in the
morning, with certain organs surgically removed. People warn each
other not to be out after dark or Foggy Jack will get you! You might

FIGURE 18.3 A drawing in We Happy Few.

Dirty Procedural Narrative in We Happy Few ■ 233

find an interrogation report in police headquarters about someone who
hears someone in the fog saying Foggy Jack’s catchphrase (“I’m afraid
you’ve come to the end of your time.”) You might find a suitcase full of
engraved cards that say the same thing. Is he real? What is he? Who is
he? I could tell you, but where’s the fun in that? Remember the old
horror movie rule: the monster in the shadows is scarier than the same
monster in sunlight. The monster in the shadows is 10% special effects
and 90% whatever each audience member fears most.
Where are the children now? Are they alive? Where did Sebastian go?

That would be telling.

d. Inconsistencies

Our game tells three player character stories that overlap in time.
Each of the three appears in the other two’s stories. Three Arthur-Sally
scenes, for example, happen in both Arthur’s and Sally’s playthrough.
Oddly, in Arthur’s story, the last two take place at Sally’s lab. In Sally’s
story, they take place in an abandoned playground. In Arthur’s story, he
asks her, “How could you?” (Figure 18.4)

FIGURE 18.4 A man in We Happy Few.

234 ■ Procedural Storytelling in Game Design

She answers, “Because I liked him? Because he had that adorable
beard? I don’t know. There isn’t a reason for everything.” Which does
not, let’s face it, sound like an excellent reason, even if you don’t know
what he’s talking about.
In Sally’s story, she answers, “Because he took me in when my mum

died? Because he was so generous? Because he said he loved me? I don’t
know, some things just happen, whether you want them to or not.”
(Figure 18.5)This is another kettle of fish entirely.
In Arthur’s playthrough, his old crush Sally is adorable but flakey and

maybe a little bit toxic. But in Sally’s playthrough, it’s Arthur who’s the jerk.
Which is the truth? Who knows? How would anyone know? You can’t

measure both the velocity and the location of a particle. Everyone has
their own version of events. It’s not just an interpretation or explanation;

FIGURE 18.5 A woman in We Happy Few.

Dirty Procedural Narrative in We Happy Few ■ 235

it’s not just different answers to “why.” It’s an actual sequence of facts that
contradicts someone else’s sequence or someone else’s facts.
Anyone who’s been in a relationship long enough has had this

argument:
“I told you [x].”
“You never told me [x]!”
In real life, most people’s version of events makes them the good guy.

“What is truth?” asked Pontius Pilate. It’s an odd conceit of games that
you can depend on what NPCs are telling you. That certainly is
economical: you only need to get the information out once. But it is
unnatural, and what is unnatural in a work of fiction is alienating.
What’s valuable about inconsistencies, when properly handled, is they
are like translucent lies: the players not only figure out what they need
to know, they also learn something about the various people telling
them the various versions of the truth.

e. Tangents

In real life, people are the heroes of their own stories. They do not
exist to tell you things. They do not exist to ask you to do things for
them and then they will give you quest rewards. Of course, in a video
game, quests need to be given somehow, and NPCs are a particularly
fun way to get them. But the player can learn a lot more about other
characters if those NPCs appear to be actively pursuing goals that have
nothing to do with you and only tangentially relate to your goals. For
example, you are trying to find the brilliant Dr. Faraday, and the two
bobbies (Figure 18.6) working reception at headquarters know where
she is. They refuse to tell you, but you overhear one of them telling the
other that Bobby Hickinbotham, who’s supposed to look after
Dr. Faraday, feels so guilty about what’s been done to her that he’s
gone to the Reform Club “to get his arse spanked.”
This becomes important to you because you’ll need to steal his ID

(the quest item), but it is important to our world story because it shows
how this society has people who feel so guilty they literally seek out
punishment. How far we can go with tangents depends on the game’s
design philosophy. In a completely immersive, naturalistic game, that
offhand comment, preserved in your journal, might be the only tip you

236 ■ Procedural Storytelling in Game Design

get about how to get to Dr. Faraday. You’d have to interpret the tangent
for yourself.
More likely, “Find Bobby Hickinbotham at the Reform Club”

becomes your next objective, complete with a map marker for the
Reform Club and a tick box in the upper right of your HUD, so you
do not, after all, need to interpret what you heard. The writer should be
able to negotiate a compromise with the level designers so that the
player who wants immersion can avoid some of the gaminess of quest
giving, while the player who just wants to get to the next mission can
avoid the verbal puzzle.
What these five techniques have in common, again, is that they

require interpretation. We don’t tell you, “There are no kids and here’s
why.” We want you to notice the absence and ask why before we start
feeding you clues. We don’t tell you, “Here is a society where everyone
takes a happy drug, and here’s why.” We start with characters accusing
you of not taking your Joy, and then you start to uncover the reasons
they’re taking it. The best time to answer players’ question is after

FIGURE 18.6 Two policemen in We Happy Few.

Dirty Procedural Narrative in We Happy Few ■ 237

they’ve asked it. If you answer it earlier, you’re pushing it at them, and
that pushes them out of the story.
There aren’t really five distinct techniques. There are no hard bound-

aries between them. All dirty narrative could be boiled down to “some-
thing should be there but isn’t” and “something’s there that shouldn’t
be.” The list is intended more to get you thinking about how we can
challenge players to make their own stories out of the bits of narrative
we’ve strewn around for them to find or rather, that we’ve put into the
game for the procedural generation engine to strew around. If they do,
they will pull themselves into our story.

DIRTY NARRATIVE IS DANGEROUS
Now, dirty narrative is dangerous. It’s about breaking the rules of
clear storytelling. What if people don’t get it? Clear narrative is fairly
bulletproof. If you have a character we care about, with something to
do and challenges, who can win something and lose something, you
can usually tell it all in order and people will be satisfied, if not
necessarily blown away. Dirty narrative is “execution dependent,”
a screenwriting bugaboo that means “if this is done superbly, it
could be brilliant, but if it’s done less than superbly, it will be
supremely awful.” The Quality Assurance people periodically send
me bugs about the inconsistencies and holes in NPC’s stories. What
if players just think we’re being sloppy? But the upside is big. In
procedurally generated worlds, we really need dirty narrative to
encourage the player to make connections between the bits of lore
we’ve made, but whose placement we can’t control. However, train-
ing the player to make those connections is critical in any narrative
game.
Video games have thousands of assets, but the real world has

uncountably many, and we are aware of at least, say, billions of
them. In any naturalistic game, we need the players to fill in the
spaces between our paltry thousands of items (Figure 18.7). If they’re
waiting for the game to hand them everything they need to know,
our world will not persuade them it’s real. If we use dirty narrative,
forcing them to interrogate and interpret our world, they may.

238 ■ Procedural Storytelling in Game Design

THE HOLY GRAIL
Could there be procedurally generated story? That would be the Holy
Grail, wouldn’t it? Game narrative does not scale. Every bit has to be
handcrafted. The player may experience a game with 31 possible endings
as a choose-your-own-adventure. But the writer still has to write all 31,
and making 31 stories that work is non-trivial. (Trust me on that one.)
Faction-based narrative—where befriending a dwarf in the Iron Hills earns
you a duel in Rivendell—can feel open and surprising and sandboxy. But
someone still has to write all the branching forks of the story. If only we
could procedurally generate story! Well, we can (e.g. Dwarf Fortress). We
can generate a lore item that says that [select name of hero from a list of
hero names] slew the terrible [type of monster] named [generated monster
name], but that doesn’t automatically make an emotionally engaging
backstory. Only some choices are fun. If Dorothy stays safely in her
storm cellar, she doesn’t go to Oz. But a writer could craft story elements
that have strong, but different, meanings in different orders. For example:
Story 1:

a. Jack cheats on Jill,

b. Jill takes a job in another city,

FIGURE 18.7 Inventory menu of We Happy Few.

Dirty Procedural Narrative in We Happy Few ■ 239

Story 2:

a. Jill takes a job in another city, and

b. Jack cheats on Jill.

These stories are different, but both feel like strong choices. We make
different assumptions about why things happened depending on the
order in which they happened. We even make different assumptions
about what sort of people Jack and Jill are.
The procedural engine can strew bits of story like these across the

landscape, and we can let the players make their own sense of them,
depending on the order they come across them. It’s hard to do this sort
of thing in all your lore. A story made of two beats can have two valid
interpretations in two different orders. If your story has ten beats, then
either they need to have strong connective tissue, meaning that there
really is only one natural way to put the beats together, or it’s going to
become incoherent when you shuffle it. You can’t just throw multivalent
story elements out there for the player to play with, and expect each
shuffle to give you Oedipus Rex.
We’re not necessarily trying to create great non-player-character

stories. We’re trying to create an immersive environment. Each indivi-
dual story doesn’t have to be brilliant; it has to reveal things about the
nature of the world. Whether or not Jill dumps Jack, the players are still
in a world in which guys cheating is a problem. And we are trying to
give value to replaying the game. For that we don’t need every beat to
be moveable. We just need a few permutations that allow the players to
reconstruct different past events when, in later playthroughs, they hit
a different assortment of story beats, or even hit the same beats in
a different order.
The most important thing we gain is that we really are never sure if

we have all the facts, if they’re in the right order, or if we really
understood what’s going on. In a game, everything is theoretically
knowable. In the real world, you can never be too sure. Just knowing
you can’t look up the ultimate answer on the Internet, because there is
no ultimate answer, helps the players suspend their disbelief that
they’re looking in on a world, rather than just pushing electrons
around.

240 ■ Procedural Storytelling in Game Design

CHAP T ER 19

Beyond Fun in Frostpunk

Marta Fijak and Jakub Stokalski
11 Bit Studios

I hope it’s safe to say that we’re beyond arguing about whether games
are just for fun. That Dragon Cancer, This War of Mine, Train and

now Frostpunk are just a few examples of titles that eschew traditional
boundaries of games-as-entertainment; these titles focus on themes (and
mechanics) examining various aspects of human condition, traditionally
unseen in mainstream titles.
Of course, games are entertainment. There is nothing wrong with

focusing on the “mere pleasure” of juicy interaction, puzzles entertain-
ing the mind or pure orgy of the senses as the main sources of value in
games. Those can be worthwhile—letting us relax, faze-out, feel wonder
or pleasure. Thankfully though, we’re reaching the point at which we
can be more nuanced. I sincerely hope that, as a medium, we’re reach-
ing the point where content of the game is more important than back-of
-the-box feature sets and genre conventions. But what makes game
content important, really?

MAKING SENSE OF THE WORLD
Humans see the world in stories. In fact, the ability to link events into
coherent narratives is an automatic psychological process, one we can’t shut
off even if we wanted to. This allows us to make sense of events and our
place in them. It allows personal growth and learning from experience. It
allows for many cognitive mistakes too, but that’s a discussion for another
time (see Daniel Kahnemans’ Thinking, Fast and Slow (2011, Farrar, Straus,
and Giroux) for some chilling examples of cognitive automations and bias).

241

Would it be a problem to draw personal experience from different
kinds of media? After all, poems, paintings, books, movies are all very
different in form. We all use the same set of cognitive skills to
experience them. Our brain always tries to search for meaning and
coherent narrative in perceived phenomena, and the stories that touch
us most deeply are those that revolve around human values.
There are many models for how stories are told, from the classic

Hero of a Thousand Faces by Joseph Campbell to more modern takes
like Into the Woods by John Yorke or Story by Robert McKee. In the
West, these tend to revolve around central tenets of conflict and
universal human values that are tested, from Romeo and Juliet to
Lord of the Rings.
Think games are any different? Think again. Games’ structure is

cyclical, compared to linear media: where stories in books or movies
are constructed through beats to scenes to sequences, to acts, games
work in loops. Games have the immediate action-feedback loop; the
tactical, short-term goal loop; the strategic long-term loop and even
further, the social or emotional feedback loop and cultural meaning
loop.1 But whether we’re thinking in story beats or looping structures,
the content can still be about what makes classic stories so powerful:
human values.
In fact, they already are. Games routinely place us in situations of

life versus death. Victory or defeat. Progress or setback. It’s just that
these particular human values are extremely overused in games today.
There is nothing wrong with them per se, just like there’s nothing
wrong with enjoying yet another summer blockbuster extravaganza.
However, if we are to progress as a medium, we could and should,
look further.
Take This War of Mine. While core loops were built on survival genre

staples of resources (having versus not-having), and the long-term goal
loop was about life versus death, there were many more nuanced
situations that asked more subtle questions. Will you steal medications
for your injured party member from an elderly couple, sentencing them
to certain death? That’s a multi-faceted conflict of mercy versus self-
ishness without a clear answer. Let’s see how we tried to leverage less
obvious human values and their conflicts to emotional effect in
Frostpunk.

242 ■ Procedural Storytelling in Game Design

DEVELOPING FROSTPUNK
So all of this theory is great and exciting, but in the end we had to make
a game, Frostpunk, to be precise. Frostpunk is a strange beast. The most
succinct way to describe its vision would be something like: “a survival-
city builder about what society is capable of when pushed to the limit.”
This statement proved fundamental to orienting ourselves in the tumul-
tuous process of development.
From the very beginning we knew that Frostpunk would be a society-

survival city building game, but what does that actually mean? We
weren’t sure. We had some vague ideas about tough choices, people in
grim situations, personal sacrifices, etc. We read a lot of books on
surviving in extreme conditions and watched movies and documen-
taries, so we knew what emotions we would like to invoke but not much
beyond that. So, the frustration began.
Thankfully, we were in a comfortable situation and had something to rely

on! We had previously made This War of Mine, which had a design people
liked. They empathized with the dwellers, and it was really well received, so
we thought it’d be easy to just do it again … and we were so, so wrong.
We knew that there would be tensions between different player

motivations, when trying to mix the feelings of This War of Mine
into the city-building genre. The city-building genre is, by definition,
focused on soulless optimization and treating the city as a single
entity to play with.2 You see, most players don’t have a problem
bulldozing districts in Cities: Skylines in order to place a new high-
way. Yet we needed to help players engage with their populations as
people and perhaps engage with becoming dictators; we knew this
wouldn’t be an easy task.

PROTOTYPE 1: SOCIETY
We started with the basics: the game is about a society. Great. But… what
even is society? After tons of reading and discussions, we took Oscar Wilde’s
definition, which is that society does not exist at all: “Society exists only as
a mental concept; in the real world there are only individuals”.
This was actually a good starting point. We realized we didn’t want to

have society function as an abstract system; rather we wanted something
derived from a group of individuals. We already had some basic city

Beyond Fun in Frostpunk ■ 243

buildings and AI agents, so we started to describe them in more human
terms.
Applying the Maslovian hierarchy of needs, we implemented a new

system of basic psychological and safety needs. From that moment, every
human AI agent had a set of needs that it would try to satisfy, or its
frustration would grow and drive the agent to different behaviours. For
example, if an agent had an assignment to a home then its shelter need
would be met, but if not, then its frustration from lack of shelter would grow.
From time to time, we would have the system check on frustration

levels, essentially asking all AI agents if they were “frustrated enough” with
a given need to start protesting. If enough agents said yes, we would notify
players with a question pop-up, asking something along the lines of, “Your
people are angry and want homes. What will you do?”
Thus, a basic society was born. Food was similar in mechanics, but the

system itself suggested a new, more profound question: “Should we eat the
dead?” If players agreed, then a new food source would be available. Child
labour was handled in a similar fashion. From time to time, the system
would check if the children were tired and working and, if so, apply
a chance for an accident to occur. If this happened, players could decide if
they wanted to continue employing children or banish child labour.
If you’ve played Frostpunk, these questions should be familiar, but the

form we used in the final game was quite different, as we hadn’t yet
invented the Book of Laws. They were simply little questions that would
pop up now and then. This was our first prototype of society, and with
great expectations, we started playtesting it. It didn’t go well, but we
gained some insight and feedback. There were two major problems:

1. There was absolutely no player agency. Those questions seemed to
pop up at “random” times from players’ perspective, so players
could not plan their next move.

2. There was no overarching narrative. The questions were pulled
from a random set with no beginning, middle or end, and players
felt it.

Importantly, people liked the questions themselves, and it was already
interesting to choose peoples’ fate in such grim situations.

244 ■ Procedural Storytelling in Game Design

Prototype 1: Values Analysis

We implemented the foundations for solid city-building genre game-
play: resource loops, sinks and faucets, etc., allowing us to build the
economy by the book, with nothing particularly ground breaking. Of
course, like all gameplay, this too was fundamentally about human
values—but these values are pretty standard, as far as these two genres
as concerned.

As you can see, there was nothing shocking; in fact, the reflective
layer (the one that we had ambitions to fill with non-trivial content) was
still largely empty. We wanted the society layer to provide thematic heft
that would make Frostpunk stand apart. But how did the situation look
at the end of Prototype 1?

Again, nothing spectacular. A lack of player agency and more
nuanced content prevented this part of the game from playing any
major role—yet. But the first hopeful signs were there: making decisions
about burying people was interesting!

Survival-builder gameplay

Reflective layer
(emotional, cultural loops)

???

Long-term cognitive layer
(strategic loops)

Life vs. death (winning vs. losing)

Short-term cognitive layer
(tactical loops)

Having vs. not having (resource/building loop)
Life vs. death (basic needs)

Visceral layer
(action-feedback loops)

Safety vs. danger (cold)
Having vs. not having (resource/building loop)

Society gameplay

Reflective layer
(emotional, cultural loops)

???

Long-term cognitive layer
(strategic loops)

???

Short-term cognitive layer
(tactical loops)

???

Visceral layer
(action-feedback loops)

Compassion vs. efficiency

Beyond Fun in Frostpunk ■ 245

PROTOTYPE 2: PROPHET
Enriched with this knowledge, we started to make a new prototype. We
left the problem of player agency for another time and decided to tackle
the lack of narrative. But we didn’t want to leave our systemic society-
based approach, so to drive the narrative, a new need was introduced:
“meaning of life”. Yes, no joke, that was an actual systemic need, and, as
you can expect, explaining it to players was a huge pain, but let’s not get
ahead of ourselves.
First, to make the feel of the questions better, we introduced a new

interface approach. Rather than popping up on the screen, breaking the
immersion and the city building experience, now the questions would
be an integral part of the world (more or less). If certain conditions
were met, a UI tracker would pop up over a building or an AI agent,
and the player could click it to see the question.
So now we had a two-step flow: the call to action (CTA) and then the

dilemma (the question). Technical edge-cases aside, the main problem
was that people didn’t feel the mood of the society as a whole. Sure,
every citizen had frustrations, but there was no easy way to check how
the whole society was doing. So we created a new element—the
discontent. It was nothing sophisticated, just an average of frustrations
of all citizens with some weights attached. We put a big red bar of that
calculation on the screen so players knew how mad people were. A long
red bar meant people were really mad, while a short red bar meant
things were good. Simple as that.
With our new toys at hand, we started to construct a narrative arc,

mostly based on the new need/frustration (meaning of life, aka fear or
angst). Your people would lose their faith, and a new leader would show up
to try to give them a purpose and lead them. We called this arc the Prophet.
The Prophet was a series of dilemmas connected loosely to the city

building aspect of the game, but that could act mostly independently as
a simple series of events on timers related to the meaning of life need.
The story told players that people were afraid that they were not going
to survive, and out of that fear, a movement was borne, focused around
a mysterious guy called the Prophet. He promised them a chance for
survival if they followed him. The player had some options for dealing
with that problem, such as building guard stations and starting an

246 ■ Procedural Storytelling in Game Design

investigation. On success, the player was presented with the choice of
what to do with the Prophet. Public execution was one of the choices,
but letting him go was also on the table.
So again, we started the playtesting. Everyone in the company was

asked to play and to fill out a survey. This way we knew if there was
even a slight chance of narrative building in their heads. Remember that
between those scripted events, there were long stretches of city building
play, so we weren’t actually sure that the narrative part was happening
in players’ heads.
The feedback was mixed. We found that the narrative was in fact

building in the players’ heads, but it was completely separate from the
city building part. People felt as if they were playing two separate
games: a city builder and a pick-your-own-adventure book. We decided
that for the next attempt, we should make stories shorter than Prophet
and more connected to base game loops.
There was another discovery, mostly from hearing people discuss it

over coffee. They wondered if it was a good thing to kill the Prophet.
There was no uniform answer. Some people said that in such a dire
situation this decision is a no brainer and that the survival of the society
is most important. Others argued the total opposite, saying that of
course survival is important but not at the cost of humanity and that
killing, even in that situation, is not acceptable.
Those discussions were fascinating to witness. We knew we had

found something important. So learning from Machiavelli, a new core
question for the game was born: “The end justifies the means. … Or
does it?”
Translating to game design, how far should players go to ensure

survival, and how many of their morals should they sacrifice in the
process? We knew that it should be an open-ended question and that
we should not give a straight answer, especially since on that topic, even
this chapter’s co-authors could not agree.

Prototype 2 Values Analysis

At this point, we knew that making decisions about our people was
interesting; we knew that the question of whether ends justify the means
is interesting, and we knew that short narratives were interesting.
However, we still lacked player agency.

Beyond Fun in Frostpunk ■ 247

Let’s take a look at the values side of things again. We developed
the survival-builder alongside the procedural storytelling engine as
well. There was much more content, the basic gameplay was more
solid, providing more developed decision spaces, but as far as values
went, nothing major had changed. We wanted the society to provide
the meat.

There was still hardly any long-term gameplay, since all decision-
making focused on the visceral layer of interaction. But we had more
content to prove that we could mine themes of the game for non-trivial
subject matter, provided we could treat it with respect and appropriate
tone (more on that later). We felt we could deliver good content, but we
were still missing tools to create actual gameplay out of the human
values conflict that we gravitated toward. This was to be addressed by
Prototype 3.

PROTOTYPE 3: PLAYER AGENCY
We had a pretty solid city building game that was growing, so to do
some things in parallel and not to burden the rest of the team, this
prototype had some steps developed outside the main game.
We wanted to give agency to players, so they could decide what

decisions to make and, crucially, when. So we knew we needed a new
part of the game that would allow such decisions, which would even-
tually become the Book of Laws. But at this stage we only had those
CTAs popping up from time to time.
We started with a mental division between decisions about:

Society gameplay loops—Prototype 2

Reflective layer
(emotional, cultural loops)

???

Long-term cognitive layer
(strategic loops)

???

Short-term cognitive layer
(tactical loops)

???

Visceral layer
(action-feedback loops)

Compassion vs. efficiency
Crossing the line vs. keeping to your morals
Good of one vs. good of the many

248 ■ Procedural Storytelling in Game Design

• individuals, which would still pop up in game space (as
CTAs) and

• huge issues like child labour or corpse disposal, which would be
enacted as laws with a different flow.

How should such an “issues” system work? We wanted every law to
have an impact on the core gameplay (new buildings, new abilities,
new employment options, etc.) but also to interact with the society
part. We already had discontent, so we added a new part, called
“agreement for reforms”. If players made a controversial decision, the
discontent would rise, while if the decision was desired by everyone,
the discontent would fall.
After preparing a list of laws we would like to implement in the first

pass, we found that this lacked nuance. Our people were in two states:
mad or not mad. It seemed that this was not enough for more complex
situations in our society. So we started to iterate.
First we created a simple list of laws (child labour, cemeteries,

sawdust in food, moonshine and so on) and a set of new parameters
for our individuals, so our people were described by fear, hope and
discontent. Enacting different laws would change those parameters. If
discontent or fear reached maximum level or hope reached zero, the
player would lose. This gave us more space for the cost of different laws
and integrated the society into the core gameplay loop, because of the
chance of failure.
We played around a little more and found that it was hard to

decide which things had an impact on fear, especially since it seemed
that we all treated fear as counter to hope. So we dropped fear and
started to play instead with this 2D space described by hope and
discontent. We weren’t sure at first how to approach agents on the
extreme ends of our 2D space. People with full discontent but also
full of hope? People with no discontent but with also no hope?
Questions like this allowed us to fully understand what we mean
when we say hope and discontent. This was an important step,
because we felt these definitions should be coherent along the whole
game. If we didn’t know 100% what we meant by them, we should
not expect the player to know.

Beyond Fun in Frostpunk ■ 249

So we asked ourselves and finally came to the conclusion that hope is
a “will to live”, or “how much agent believes in survival”. Meanwhile,
discontent is more or less being angry with the ruler. Under these
definitions, agents with threshold values became clearer. People with
high hope and high discontent strongly believe that they will survive,
but not with that ruler. People with no hope but no discontent have all
of their needs met but don’t see a purpose in surviving, as they know
that tragedy and/or death will come soon enough.
This concept stayed with us through to the end of development. We

added one more mechanic: if the discontent is really high, then
eventually people start losing hope, but it’s balanced to be subtle, not
a core loop. So hope and discontent are more or less independent.
At this point we had laws and some basics of the system, but laws

were just a big pile of things to pick from, without any structure or
sense of progression. It was hard to tell if you were leading your people
in a direction. So we started to build a second prototype of laws. This
time we focused more on flow and enacting laws than on the systems
working underneath. To be honest, we reinvented the wheel here and
tried some weird book-inspired interfaces and flows, including a big
dynamic system for the interactions, but we ended up scrapping them
for a simpler structure similar to a standard tech tree. It was nothing
fancy, just a tree-like structure with a cooldown (so you couldn’t enact
all of the laws at once) and a rule that every law that introduced was
permanent.3

These iterated prototypes taught us that we needed a hope bar
underneath the discontent and a new tech-tree like structure—the
“Book of Laws”. After an art treatment, we were ready for another set
of playtests! Again, everyone in the company was asked to play, and
a survey was attached. We sent it out and waited. And after a while, the
feedback gates were opened again.
People liked it! Players felt they had agency, and they started to think

about their next moves with the society. They knew what they needed
and planned accordingly, managing discontent and hope in the process.
Of course, there were things they did not like, especially the way laws
were connected to each other. That was a strange observation for us.
We knew that we needed to have progression between the laws, so that
players knew they were building something, but we didn’t understand

250 ■ Procedural Storytelling in Game Design

how important that was for them. So we started to dig around that
subject, and keeping in mind the key question (does the end justify the
means?), we found something. Going through some sociological books,
we found the boiling frog story, and it was perfect!
The boiling frog is a cautionary metaphor of gradual, creeping normal-

ization. It goes like this: if you take a frog and put it in boiling water, it
will jump out to save its life, but if you put the frog in cold water and
gradually increase the temperature, the frog will not sense it, and you will
have a great frog soup. From a biological perspective, this is nonsense,
because the frog will run away during both methods, but the metaphor
illustrates how humans can accept radical changes to their political and
social situations. Have you never wondered how a totalitarian state is
born? A few things need to happen, but “boiling the frog” is one of them.
You cannot wake up in the morning and decide that everyone who likes
pineapple pizza should be incarcerated, but things of similar absurdity
have happened many times in history. You just have to do it slowly, with
every law pushing the boundary of morality a little bit more. You stretch
it and stretch it, and suddenly this law is not as ridiculous as it seems. It’s
just a logical conclusion of laws that came before.
This is why it is so important to look at our governments when they are

making those small changes that are just outside our comfort zone,
because they will eventually add up to a bigger change, and then it can
be too late to react. This concept perfectly supported the questions
already in our game. We started to construct laws around this, especially
a second group of laws, which we called the purpose laws. We wanted
every step to be a little bit more than the previous one. If players do not
stop and think about what they are doing, they can end up in a very bad
place, and the same goes for their society. People in the game would
revolt if players started with executions of prisoners, but if it’s a logical
step after many other smaller steps, then it’s a different story.
We also had to decide which laws to put in the game. We had an

initial list from the first prototypes, but that wasn’t enough to fill the
trees (first three, then finally merged to two). We did extensive research
to fill in the gaps and add substance to support the narrative we wanted
to create. The final set of laws is relatively self-contained but certainly
not complete. It’s not, by any stretch, every possible decision in the
situations depicted in the game, but we determined that this set of laws

Beyond Fun in Frostpunk ■ 251

gave players a scope of decisions broad enough for player agency but
narrow enough to tell the stories we wanted to tell.
At this point, we had a key question of ends justifying the means, the

concept of boiling the frog, a new system of player agency and the
knowledge that short stories were interesting.

Prototype 3 Values Analysis

The Book of Laws allowed us to finally push a lot of decision-making
into short- and long-term strategic loops. Players were able to strategise
around decisions, but their consequences weren’t just economical in
nature; they touched much more subtle and less obvious human values.
This is what we wanted all along.

By now development was pretty advanced, yet we still didn’t feel we had
nailed the reflective layer. Sure, there was a lot of unusual content for
a city-builder-survival hybrid, and it was fun to navigate it, but at the end
of the day, some achievement-focused players didn’t really “get it”. There
were few dilemmas focused on the (again, further developed and by now
pretty deep) economic gameplay. We doubled down on the types of
decisions players made and their consequences to try to create a more
permanent, pervasive change in the society. We wanted to make players
notice the subtle cues that their choices were not just about gathering coal.

FINAL STRETCH
At last, we had a solid foundation, but we started to realize that it was
important to show a permanent change to our people. We wanted
players to see the consequences of the laws they made, so they could

Society gameplay loops—Prototype 3

Reflective layer
(emotional, cultural loops)

???

Long-term cognitive layer
(strategic loops)

Crossing the line vs. keeping to your morals

Short-term cognitive layer
(tactical loops)

Extortion vs. balance
Compassion vs. efficiency

Visceral layer
(action-feedback loops)

Good of one vs. good of the many

252 ■ Procedural Storytelling in Game Design

ask themselves if this was the society that they wanted to create, and if
this was a society worthy of survival. So, we added consequences to
every single law.
We had a neat system for showing stories on a personal level,

using those CTAs and small dilemmas. Building on that, we created
short narrative arcs, to show how different laws affected the lives of
the individuals. We especially wanted to show that some laws were
good for the survival of the group but at a great cost for a single
person. For example, radical treatment might be good for medical
efficiency but could leave someone disabled for life unnecessarily.
As always, with new content comes a new problem: tone. It would have

been easy for us to write the most dark, brutal and absurd consequences
for every law. But why? And for what? We didn’t want to be sad and dark
for the sake of being sad and dark. We wanted to show complex humans
in complex times. So we tried to write on the other end of the spectrum,
with delicate and subtle consequences. Most of these still had depressing
undertones, but then the problem was that usually only the person who
wrote them understood them. So we found ourselves in quite a pickle. We
had a spectrum of tone for our consequences. One end was dark, grim
and cartoonish, so every time one of those would pop up it broke the
immersion; on the other end we had consequences so subtle that no one
could understand them. We decided the key was to find the perfect spot
for our game on that spectrum.
I would be happy to tell you that we then used advanced math and

estimated the perfect tone on the first try, but that is simply not true.
We used brute force. We rewrote it and rewrote it and rewrote it, and
finally after weeks we found something we all felt comfortable with. We
finally felt the consequences showed something important, not in an
obvious way but also not as dark comedy.
We felt pretty good with the place at which our systems and content

arrived. But at the beginning of this chapter, I wrote about the empathy
for individuals that was in This War of Mine. Did we manage to create
that in Frostpunk? We weren’t sure. We started intensive playtesting
with external playtesters and … no. There was not much empathy for
those little people, but there was something much more interesting
happening with our players’ post-playthrough reflection. I know, it
doesn’t sound sexy, but hear me out.

Beyond Fun in Frostpunk ■ 253

Players did not feel the in the moment empathy, but after they
finished playing, they started to reflect on the decisions they made.
They questioned their own morals and asked themselves if there even
was a right choice in such times. That post-playthrough reflection was
very interesting for us, so we wanted to support it even more.
The endlog was designed to support this feeling. We didn’t want to

give answers; we just wanted to support the question, so we did the only
thing that we could: we showed players what they’d done, their whole
playthrough, and we asked them, “Was it worth it?”

This proved to us that, at least for some players, we had finally found
the reflective layer of interaction.
We were pretty happy with the result. Along the way it had become

obvious that Frostpunk would be a much more “brainy” game than This
War of Mine, relying on reflection rather than simple empathy for its
emotional impact. It seems that we succeeded, at least to a degree.
Did we nail it 100%? Of course not. There were many reviews and

opinions that corroborated our testing: people reflected on what they
did to survive, asked themselves big questions about crossing the
invisible line: whether that was how authoritarian regimes formed, and
whether that means that anyone is a potential dictator under the right
circumstances. That’s all we could have ever asked from a game aiming
to provide more than “just” entertainment.
But there were others that didn’t “get it”. They focused on the

economical gameplay and completely skimmed over the society layer.
They didn’t notice the people, or they viewed the content of Book of
Laws and its consequences purely in light of gameplay and goals.

Society gameplay loops

Reflective layer
(emotional, cultural loops)

What does crossing the line mean?

Long-term cognitive layer
(strategic loops)

Crossing the line vs. keeping to your morals

Short-term cognitive layer
(tactical loops)

Extortion vs. balance
Compassion vs. efficiency

Visceral layer
(action-feedback loops)

Good of one vs. good of the many

254 ■ Procedural Storytelling in Game Design

And that’s OK, because that means that it’s possible to nail it even
better next time. The game did tremendously well, both financially and
critically, but the fact that some people were not convinced shows that
there is more room to provide non-trivial concepts in games. It also
shows that players are receptive toward those concepts, praising and
enjoying an experience that can hardly be described as just fun, an
experience that at least to some degree tries to transcend traditional
genre and form conventions. Ultimately, for us as creators, it shows that
it’s worthwhile making worthwhile games.

NOTES

1 See Michael Sellers’ excellent book Advanced Game Design: A Systems
Approach for a coherent taxonomy of game structure.

2 It’s worth noting the authors feel this is a deeply satisfying activity.
3 We added permanency of laws for simplicity in the first iteration, but it

stayed.

Beyond Fun in Frostpunk ■ 255

This page intentionally left blank

CHAP T ER 20

Procedural Storytelling
in Dungeons & Dragons

Steven Lumpkin
Guerrilla Games

T abletop role playing games (TTRPGs)—like Dungeons & Dragons
—are a fascinating design space. In an industry like ours, where

product release cycles regularly stretch to the half-decade mark at the
high end, and even at the low end rarely compress lower than
6 months, a tabletop role playing game can offer creators the
opportunity to rapidly iterate on their creative output. More than
that, our table offers us the opportunity to test and explore the very
essence of the creative process itself. In the era of Twitch and Critical
Role, when the fifth edition of Dungeons & Dragons is growing
massively in popularity and profitability, if you haven’t begun explor-
ing this fascinating tool, let me be the first to encourage you to do
so. This chapter will explore some of the tabletop role playing games
available to you and show examples for integrating procedural gen-
eration as a tool into your creator’s toolkit. Finally, we’ll tie it all
together by discussing what the experience of creating content
through a highly procedural, improv-heavy process can teach us
about the nature of player stories, player engagement, and procedural
generation’s goals, risks, and successes.
If you’ve never played a tabletop role playing game before (hence-

forth, TTRPG), then very quickly, the simple, overly reductive definition
I will give you is that it’s a collaborative story-telling experience,
commonly in a high-fantasy setting of elves, wizards, and dragons.

257

One player is cast in the role of the “game master,” the primary
storyteller (also called a dungeon master, master of ceremonies, or
other lofty titles depending on the game being played). The game
master is responsible for creating the plot as well as arbitrating the
rules, and each of the other three to six players control a single
character throughout the story.
Like all good games, the best TTRPG sessions focus heavily on

player agency and (in stark contrast to video games, where verbs are
tightly defined) the only limits imposed on player capabilities in most
TTRPGs are those that make sense in the fiction: “No, you can’t
climb a tree; there’s no tree nearby” or “Well, you can try to climb
that tree, but the dragon is raking its claws down your armor right
now, so it’s gonna be real hard.” TTRPGs are a conversation after all,
where the game master presents a scenario (“The bartender fixes you
with a steely glare, and says ‘shame about those murders out in the
forest, eh?’”), which the players then promptly ignore in their
immediate response (“I tell the bard to play ‘Free Bird!’” “I run
outside, I wanna steal that fancy horse in the stables!” “Do we have
any Cheetos??”).
When faced with the challenge of telling a story that incorporates 3 to

6 distractible players with their own interests, game masters can often
fall prey to what’s called “railroading” the players, forcing them along
the intended story experience: “Uhhh, the bartender follows you out-
side! He’s saying something about murders in the forest, when suddenly
a shadowy cloaked figure steps up behind him and stabs him! ‘You’ll
never find my forest lair,’ the figure snarls, then runs off!” This can be
an intensely frustrating experience for everyone involved. So let me
assure you: there is a better way, and it shares many features with
procedural generation.
If you want to dip your toe into TTRPGs as a story creation

mechanism, allow me to suggest that your first stop be a game called
Dungeon World, by Adam Koebel and Sage LaTorra. Not only are the
rules available for free online (google “dungeon world gazetteer”), but
also it requires no preparation time before your first session, is set in
the commonly popular high-fantasy world of elves/wizards/dragons,
and features simple and easy-to-understand rules. You and three friends
could sit down and start playing it tonight, if you wanted. More than

258 ■ Procedural Storytelling in Game Design

that, Dungeon World introduces game masters to a few pieces of
technology that are missing from the classic Dungeons & Dragons, and
for those of us passionate about procedural storytelling, these pieces of
technology are vital. I’d like especially to talk about Moves, Dangers,
and failing forward.

MOVES
Moves are the in-game fictional-mechanical actions that both the
players and the game master can take. When a player says “I scan the
sides of the canyon, looking for any sign of an ambush,” that’s a Move
probably Discern Realities. Moves, you see, are often a bit ambiguous
and can be negotiated as to the exact action that’s called for by the
fiction, in a number of circumstances. Similarly, a player might say, “I
thrust my sword into the goblin’s chest!”, then roll dice, getting a 12,
hitting the monster. That’s a Move called Hack and Slash.
The game master can also make Moves, which may be entirely

narrative or mix narratives and mechanics: “Suddenly, the ground
below you groans and shifts, and you hear a hollow roar echo from
deep within the earth” would be Show Signs of an Approaching Threat.
Alternatively the game master might say, “Okay, you slay the goblin, but
remember how the ceiling was shaking and dust filtering down? Chunks
of stone break loose crashing down on you, and you take 5 damage,”
that’s Deal Damage (or maybe Use a Location Move).
Notice here that Moves can be entirely narrative, especially on the

game master’s side, or they can trigger mechanics: dice rolls, threats
advancing, and others. A Move can be triggered by:
A mechanical change: “It’s been long enough, I’m advancing the

clock for the Necromancer Cabal (mechanical change). … I guess
I need to have them make a Move”, or
A narrative situation: “Well, showing signs of the approaching threat,

the buried dragon, weakened the ceiling. … I guess I need to make the
locations Move to have the rocks fall!”.
Both players and game masters have pre-set lists of Moves they can

choose to execute—whenever it feels convenient or when the fiction
seems to call for it or (especially) in response to players making failed
rolls. The game master is given a lot of flexibility in terms of choosing

Procedural Storytelling in Dungeons & Dragons ■ 259

the pacing of the Moves and how much to use “soft Moves” (like
warning signs) versus “hard Moves” (like dealing damage), and this is
what allows different game masters to develop their own personal and
dramatically different styles. The game master is encouraged to make
their Move entirely through the in-game fiction and never to name it
out loud. The game master’s list looks like this:

• Use a monster, danger, or location move

• Reveal an unwelcome truth

• Show signs of an approaching threat

• Deal damage

• Use up their resources

• Turn their Move back on them

• Separate them

• Give an opportunity that fits a class’s abilities

• Show a downside to their class, race, or equipment

• Offer an opportunity, with or without cost

• Put someone in a spot

• Tell them the requirements or consequences and ask

What I like about this list of Moves is it provides game masters with
a framework, a set of pre-established categories to draw from when
building tension in their game. “Use up resources” can mean different
things when trying to pick a lock or climb a cliff or find a way through
a dark maze, but the consequence is similar in each circumstance. A lock
pick breaks, a potion bottle breaks from a fall against a ledge, or a torch
snuffs out and a new one is needed.
Especially interesting in the list of game master Moves is the fact

that they’re all deeply narrative structures. They’re not concrete
events; they’re narrative categories that can inspire us, as game
masters, to generate the concrete events that we need on the fly

260 ■ Procedural Storytelling in Game Design

during play. The game rules tend to constrain what seems “fair” in
terms of consequences (a goblin’s dagger deals a previously designed
and specified amount of damage, for example), and the fictional
situation often builds to a breaking point that calls for a Move from
the game master who, though free to choose from the full and broad
categories above, is probably encouraged via what makes sense in the
story to choose from a smaller subset of possible actions that just
seem to flow from the current fictional point. The amount of
narrative information available to the game master intersects with
the broad category of possible Moves to inspire the game master’s
decision-making.

DANGERS
Dungeon World proposes tracking high level pressures against the
players’ heroism in the form of something it calls fronts (as in “fighting
on two fronts”), each of which is composed of a collection of Dangers.
Dangers, in Dungeon World, are clusters of fictional-mechanical infor-
mation that powerfully allow for the game master to build a story that
grows along with the players, no matter what their actions or inactions
may cause in consequence. Let’s break down the anatomy of a Danger.
Here’s the high level:

• Type—what general sort of danger is it?

• Identity—what, specifically, is this danger?

• Impulse—what does this danger ultimately want?

• Moves—how does this danger like to behave toward its enemies?

• Grim portents—how will this danger proceed, if unchecked?

• Impending doom—how will this danger alter the game state, if it
gets its way?

Let’s drill into each of these parts a bit more.
There are five proposed base types for Dangers: ambitious organiza-

tions, planar forces, arcane enemies, hordes, and cursed places. Broadly,

Procedural Storytelling in Dungeons & Dragons ■ 261

choosing the type implies a few things about the fundamental nature of
our Danger, and it unlocks further choices.
Each type has a collection of possible identities, each with its own

impulse. For example, the identity of an ambitious organizations type of
danger could be a misguided good (impulse: to do what is right, no
matter the cost), a thieves guild (impulse: to take by subterfuge), a cult
(impulse: to infest from within), or more. The identity tells us just what
kind of thing this Danger is, and its impulse gives us a fictional
motivation for what this thing is trying to accomplish. When we say
“Right, our sleepy town is struggling with a cult,” we already know the
kinds of things that are probably happening behind the scenes.
Each type also has a series of Moves that it can make. Ambitious

organizations can make Moves such as attack someone by stealthy
means (kidnapping, etc.), attack someone directly (with a gang or
single assailant), observe a potential foe in great detail, and more.
Consider these Moves the common ways that this type likes to behave
toward its enemies. Our cult might have dead carrion crows following
our players everywhere or might suddenly orchestrate the disappearance
of a key contact with the town guard.
Next, each Danger (or collection of Dangers) has a pre-determined

sequence of events, called grim portents. This is a five- or six-step
sequence of events that establishes how the situation would progress in
a world where the players didn’t exist, but it also tells us what will
happen if the players are too slow or fail to discover important clues.
The Danger in question might even decide to step up its pace, when the
players confront the town priest, maybe the cult skips past “Harvest
Bones from Old Quarry” and goes straight into “Invoke the Rain of
Blood” territory! Finally, the impending doom sets out the end state of
the world, from this danger (or collection of Dangers) going unchecked.
If the cult gets its way, the end result in the immediate environment is
tyranny; our peaceful village has been enslaved, the dead taking the
rightful place of the living.
What impresses me about Dangers, as a game master, is that they’re

almost like a class in a programming language: a pre-defined structure
that I can fill however I want, that does similar useful things for me no
matter how I fill it. If my players do something unexpected and I’m at
a loss for what happens next, I can look at my Dangers and ask myself,

262 ■ Procedural Storytelling in Game Design

“What’s each Danger’s instinct? How could that press against the
players? Should I advance a Danger’s grim portents? What kind of
Moves could I make here?” All of the questions that arise during play
seem to naturally pull their answers from the information that a Danger
organizes, just as procedural algorithms pull from pre-established con-
tent blocks to provide to players in a video game.
The interesting thing that we, as game designers, can pull from

Dangers in a game like Dungeon World is just how narrative some of
the Moves can be (especially Danger or game master Moves). “Show
signs of an approaching threat” is narratively incredibly broad. It offers
no immediate action to the players but serves as a visible notice that
things will get bad soon, either due to the players’ continued inaction or
as a result of their pursuit of their current course of action. This is the
real power of playing at a table with a creative game master: the brain’s
pattern recognition machine can see opportunities on the fly, grab
them, and build them into rich narrative experiences. A framework
like Dangers makes this process even easier. As game masters, we don’t
need to pre-define all of the possible “signs” of each danger’s
“approaching threat,” but as game developers, we could build that list!

Signs of Approaching Threats

Cult Leader Sylvar The Demon, Vorilex The Risen Dead

1 An acrid chemical
smell, magic broken
free from traditional
confines.

Sulfur and brimstone on
a thick morning fog.

A grief-stricken widower
claims his late wife came to
visit him last night.

2 A flock of a hundred
ravens, all dead, eyes
staring from tree
branches.

Every dog begins barking at
1:00 am and then runs and
hides exactly 13 minutes
later.

A hunter swears—SWEARS—
his arrow pierced the deer’s
heart but can’t find her body.

3 The sound of nails on
a chalkboard, heard in
your mind.

A thunderstorm super-cell,
its heart glowing a deep
magma red.

The tavern keeper refuses to
go into the basement, after
scraping sounds come from
the walls.

4 Every religious symbol
in town cleft in two one
night.

An exceptionally pious
young boy sleepwalks to the
quarry’s edge.

A woman caring for her
deathly ill husband claims
he’s recovered.

Procedural Storytelling in Dungeons & Dragons ■ 263

FAILING FORWARD
Though these words aren’t strung together in just this way in the
Dungeon World rulebook, Dungeon World is a game that relies on the
concept of “failing forward,” the idea that when players fail at some-
thing, it should advance the story, rather than stop it. (See also: Chapter
7 on “narrative momentum”.) This is one of the main ways the game
master is allowed to make Moves: when the players fail on their roll or
when they roll a success with consequences. In traditional Dungeons &
Dragons, failing to pick a locked door simply means the players are
blocked at that particular juncture and must find another way around,
at least, according to the rules as provided by the rulebook. In Dungeon
World, if players fail on a roll to pick locks, the rules give me responsive
options. I could “show signs of an approaching threat” and say “You
hear the heavy breathing and thudding footsteps of an ogre coming
down the passage behind you.”
In addition to the game master making Moves based on player

failures, there’s another requirement for the game master to follow: the
“Moves snowball.” The game master’s Moves should snowball, starting
small and getting bigger and bigger until they smash into the players
like an avalanche. What at first was a simple “sign of approaching
threat” (e.g., a flock of crows darkening the sky) turned into a soft
Move where the cult stole away a key guard contact, which turned into
a more threatening Move with the cult keeping tabs on players through
carrion crows- which can turn into an ambush by Cult Leader Sylvar
himself.
These two tenets tell us when we should make Moves and which

Moves come first versus which Moves follow. Essentially, the rules of
the game keep ratcheting up the pressure against players at regular
intervals, pulling both fictional events and their mechanical conse-
quences from sets of pre-determined lists of possible options, a lot like
procedural generation in a video game.
A number of other games are in the same game design family as

Dungeon World, and each of them plays with these elements in slightly
different ways. If you’d rather play in a post-apocalyptic Mad Max
wasteland, Apocalypse World is the progenitor of the powered by the
apocalypse system that Dungeon World uses. Blades in the Dark, in

264 ■ Procedural Storytelling in Game Design

contrast, is a game about playing a gang of thieves in a steampunk city
haunted by the ghosts of the past. These two games draw on the same
category-based sources of inspiration as Dungeon World, empowering
the game master to be creative on the fly by providing clear guidance
for what categories of events to provide and when.
Stars without Number, by Kevin Crawford, is a TTRPG set in the far

future of space travel, laser pistols, and alien species. Not only does it
provide a framework for generating an entire star system out of a series
of rolls (including multiple planets, with their own cultures, tech levels,
alien species, and more), it provides a framework for the game master
to “play out” sequences of events between play sessions, allowing the
world to change and advance over time. All of these features share DNA
with procedural generation, using die rolls to inject randomness into
pre-defined sets of possible outcomes.
My own preferred style of Dungeons & Dragons is called the West

Marches, a “hexcrawl” where players explore around an open world
commonly drawn onto hexagonal graph paper. As players crawl from
hex to hex, exploring for adventure, I make checks against encounter
charts. Players might encounter orcs in the plains, vicious living plants
in the forest, or undead crocodiles in the swamp. Beyond monsters,
players might encounter strange static energy storms or a great murder
of crows all cawing the names of the recently dead. As I prepare for
play, I pre-seed each of these options onto tables with their own weight
that I roll on as players explore, essentially infusing Dungeons &
Dragons content creation (traditionally highly authored) with proce-
dural techniques. This marriage of the procedural and the authored fills
my mind with more interconnected options than I could have thought
up on the fly, allowing the pattern recognition machine that is our brain
to recognize elements that line up and assemble a compelling experi-
ence out of them.
What I love about this style of Dungeons & Dragons is how it leaves

room for discovery on my side of the table as well as on the players’
side. When we all sit down, none of us knows what’s going to happen in
today’s game. My players probably have a loose goal in mind, but on
the way there, the game’s rules interact with the procedural content
generator in ways that create story. Even more, player actions clash with
details of the prepared game world and enemy motivations to build

Procedural Storytelling in Dungeons & Dragons ■ 265

narrative connections that our brains can rely on to incorporate random
dice rolls as naturally arising events that are tied to the story, rather
than as arbitrary mad lib interjections.
Let’s talk about a recent example. My players were exploring the

forest to find a trio of lizards worshipping a false god, a boast one of
them had made after drinking from a magical drinking horn (the boast
itself a randomly rolled result!). They made their way into the forest,
encountering a quartet of (randomly rolled) Orcs, and then getting
ambushed by a (randomly rolled) van-sized burrowing praying mantis
called an Ankheg, both fights costing them spells and hitpoints to
overcome, resources that are difficult to recover. When they finally
made it into the forest and got ambushed by a (randomly rolled) set of
living plants, one of my players correctly judged that his dwindling
resources would benefit from avoiding this fight and set out with
negotiations.
To my amused surprise, the Monster Manual rulebook I pulled these

from assigns these plant creatures as speaking the common tongue. On
the fly, I had to come up with a motivation for these living plants to be
attacking interlopers into their territory. I decided, somewhat arbitrarily,
that they wanted to secure the primacy of plant life and thus wanted to
slay flesh-bound creatures, but they weren’t picky about what, exactly,
was killed. With that, some clever bargaining on my players’ side, and
some lucky dice rolls, my party negotiated safe passage through the
forest; players would do some killing for these plant creatures, in
exchange for safe passage. This was all a surprising turn of events that
was made possible only by the roll of the dice (THIS many of THAT
monster type) crossed with my players’ dwindling resources pressuring
them to play smarter and find outside-of-the-box solutions that would
retain more of them.
From here, however, my knowledge of the world I had built was

enough to let my creativity step in; what these plant creatures wanted
specifically was the death of a basilisk that I had placed in an adjacent
zone during preparation. As my players slowly made their way past old,
crumbling statues of previous adventurers, and the knowledge of their
foe slowly dawned on them, they began to hatch a plan to dig a pit trap
and lure the basilisk into it with a handful of well-placed illusions,
slaying it while they had it at a disadvantage. The battle was fierce, and

266 ■ Procedural Storytelling in Game Design

one of them succumbed to its gaze and turned to stone—definitely
a source of future adventure—but at the end of the day, the party was
victorious. What they don’t know yet, though, is that this basilisk was
itself the false god that the aforementioned trio of lizards was worship-
ping … And now I have something interesting to build future
events on.
Even in this story, we can see the kinds of frameworks that allow

procedural content generation to be valuable. Procedural content,
whether for computer games or tabletop role playing games, relies on
our brains as pattern recognition machines and storytelling machines.
The most powerful procedural content in computer games comes from
content that seems to imply a story: a dwarf mourning the loss of her
spouse in the recent elephant attack gains sudden inspiration, carving
a beautiful elephant-tusk spear, engraved with a dwarf weeping before
an elephant; the dwarf is supplicating; the elephant has a fearsome gaze.
Likewise, at the table, the best use of procedural content is to inject

randomness into the pattern recognition and storytelling machines of
our brains. Of course, these plant creatures want something; they hate
something nearby. Of course these wolves are following you; you’ve
been smoking bear meat for rations from your recent fights. At the
table, the most unexpected events can become fodder for our creative
minds to open up to the possibilities at play and tell stories that we
never would have come up with on our own, such as:

Yes. When your Speak with Animals spell finishes, the wolf fixes
you with a knowing glare. He tells you a tale of sorrow, how the
woman he had befriended years before was slain by the rat king.
You carry her signet ring now, found in the detritus of the lost
temple you plundered; he and his pack will guard your return to
town if you consent to give him the ring at the end of the journey.

TTRPGs give us the opportunity to look at this process of creation-
through-discovery, pattern recognition, and the sorting of those pat-
terns into stories in real time. Many TTRPGs (Dungeon World, Apoc-
alypse World, Blades in the Dark, Stars without Number, even certain
styles of Dungeons & Dragons) can provide us with additional tools for
sorting events into a story-friendly structure, naturally pushing the

Procedural Storytelling in Dungeons & Dragons ■ 267

action forward and driving tension higher. Using these tools can make
this process clearer and help us see what our brains latch onto, both on
the player’s and the game master’s sides.
For me, procedural generation at the table is strongest when it drives

against the game’s mechanics, encouraging players to make interesting
decisions. It’s also best when it inspires everyone at the table to have
eureka moments of spontaneous justification—the storytelling that
naturally justifies this event as a logical one that fits into the world and
story, rather than as the pure random happenstance of dice rolls that it
is. It’s easiest to guarantee that when the procedural content has strong
ties to the rest of the world: plant creatures with motivations linked to
a nearby monster, wolves that follow the players because of their freshly
smoked bear meat. Motivations, instincts, and goals can help the entities
in your game world feel more deeply integrated, as well as intentionally
doing the work to tie content to content, building a web of connections
to justify even the results of the smallest roll. The more narrative
connections there are, the more players and game master alike will be
willing to accept the arbitrary results of the dice as intuitive and apply
their own interpretations and stories on top of this framework.
Give it a try sometime. If you’re passionate about storytelling and

procedural generation, then cracking open any of the TTRPGs I’ve
mentioned will give you a window into your own mind and the minds
of your players. From there, it’s easy to begin exploring what creates
compelling stories at your table and some possible avenues for integrat-
ing the links and structures necessary for compelling procedural story-
telling into your work as a digital game designer. At worst, I guarantee
you’ll end up surprising yourself with what you come up with, and
there are far worse ways to spend a Sunday afternoon.

268 ■ Procedural Storytelling in Game Design

4
Characters

R obust characterization is a key element of storytelling. We are
people, and fictional people that share our dreams, struggles, and

fears provide a connection between the story and us and ultimately
between each other as we navigate life’s mystery together. Whether
through action, description or dialog, the author can skillfully distin-
guish characters, make them relatable, drive the narrative, or teach us
something about ourselves.
The challenge of generating even a portion of these elements to the end

of creating believable or memorable characters can feel almost insur-
mountable. As luck would have it, some have withstood the crucible and
returned with wisdom for you, dear reader! In the chapters to follow, we’ll
focus on personalities, action, and dialog, keeping in mind that the lessons
and techniques of the other sections can be applied to character descrip-
tions, development, and narrative arcs specifically.
Pitfalls are numerous, and in the sphere of video games, traditional

writing intuition may not apply. Do characters with sparse detail feel
repetitive? How much detail is too much? Which archetypes work best
in practice? Can the generated characters perform their mechanical
functions in the game world? As with all game design, proceed with
care, and always keep the experience of the player in mind.

269

This page intentionally left blank

CHAP T ER 21

Maximizing the Impact
of Generated
Personalities

Tanya X. Short
Kitfox Games

P ersonalities, in real life or in algorithms, can be summed up as
“what we do and why we do it”. I would argue that personalities,

their causes and their expression are made up of four major compo-
nents: motivations, relationships, ability and knowledge, which can be
separated into reasoning and behaviour (Figure 21.1):
So, if you pick a reasoning and a behaviour for your generated

character, theoretically you’re done. You generated a personality. Congra-
tulations. But is it an interesting personality? Does the player understand
what it is? Are the connections between the reasoning and behaviour
satisfying? In this chapter, I will hope to share a few ways you can help
your characters’ personalities (or other generated narrative elements) feel
“more interesting”, and have a stronger impact on the player’s experience
of your game. For these purposes, I’ll be skipping over the actual methods
of generation for the most part and instead focus on design methods.

TIP 1: DEFINE THE PLAYER’S INTERPRETATION PROCESS
Which came first, the motivation or the behaviour?
Even if we think someone’s reasoning occurs before actions, we are

likely to say “Arron usually tells the truth, therefore he is honest”

271

(character judgment) and also say “Arron is honest, therefore he usually
tells the truth” (logical statement). But for your game, you need some-
thing stronger than correlation; the player needs to understand which is
causing which.
It might be natural to encourage the player to use the “character

judgment” method: if the player observes that Arron tells the truth, the
player can see that therefore he is honest. Passive media favours this
“show don’t tell” approach to storytelling—interpreting others’ actions
mirrors our real life experiences. Personality-interpretation gameplay is
usually found in authored media, such as Uncharted or just about any
novel.

BEHAVIOUR

REASONING

KnowledgeMotivations

AbilitiesRelationships

• Verbs
• Vocabulary
• Skills
• Limitations

• Friends
• Enemies
• Strangers
• Objects
• Self

• Needs, Desires
• Virtues, Vices, Values
• Moods
• Impulses
• Patterns, Habits

• Memories
• Experiences
• Understandings
• Beliefs

FIGURE 21.1 A pie chart of reasoning and behaviour.

272 ■ Procedural Storytelling in Game Design

However, currently in the procedural generation space, the opposite
experience is offered. Generated personalities tend to be explained up-
front, closer to a “tell then show” approach, with the player taking
information about personality traits and comparing it to character
behaviour to form a mental model of the underlying algorithm, such
as Crusader Kings II, Black and White, or Dwarf Fortress.
This is likely because in system-driven simulations; an appeal of the

genre itself is the gameplay of learning those systems and coming to
understand them deeply. Since causality is key to understanding the
meaning of a simulation, hiding it behind character judgments or other
“fuzzy” interpretations is likely to frustrate your players. Players enjoy
defining a cause and an effect, even if (as is likely) the effect becomes
another cause, which creates another effect, and so on.
In The Shrouded Isle (Figure 21.2), as discussed in Chapter 21,

villagers generate with names, portraits, gender, family affiliation and 1
random virtue and 1 random vice. These traits change their ability to
contribute to the village and allow special events to occur.
For example, the virtue accusatory (seen on Nadya in the upper right

of Figure 21.2) mostly means that characters are skilled at penitence
tasks but also means that the engine may select them to populate certain
random encounters, such as those involving wild accusations.
Importantly, in this screenshot, Nadya’s “accusatory” virtue happens to

have been previously discovered and revealed to the players. In this case,

FIGURE 21.2 The Shrouded Isle (2017)

Maximizing the Impact of Generated Personalities ■ 273

the players can use their knowledge of Nadya’s personality as a factor in
how to react to the situation. Knowing that Nadya is accusatory, they may
be more sceptical of this report—they use their knowledge of her person-
ality to decide whether or not she is telling the truth.
If Nadya’s virtue were only displayed as “??????” in a Shrouded Isle

event, the accusation event would then provide a clue—maybe Nadya is
accusatory, or maybe Arron really is a blasphemer, or maybe both.
Later, when the truth is discovered, this is a learning/discovery moment
for players.
In Moon Hunters, we made the traits a reactive system entirely—the

game tried to interpret the players’ behaviours and choices into mythic
hero traits (cunning, foolish, etc.). The behaviours were experienced by
players and used to calculate the “reasoning” and then displayed as the
players’ personality traits. It’s possible this might have been more
satisfying for players if they had been able to input on the reasoning
itself or further explore the influences of one on the other.
In order to employ the other tips that follow, you must first decide

which your system and player experience depends on first—does beha-
viour determine personality, or does personality determine behaviour?
And how does it appear to players?

TIP 2: PERSONALITIES ARE ALREADY SUBTLE
When it comes to physicality, there are many highly effective cues you
can use to tap into human biases, assumptions and instincts, such as the
human penchant to detect faces and eyes, to be alarmed by certain
colours, etc. Connections between reasoning and behaviour (i.e. person-
ality) are difficult to “see” and are based more in culture than biology.
Personalities are 4th dimensional qualities, proving themselves over
time and are subject to interpretation.
It’s tempting to hide some reasoning elements (needs, desires, virtues,

etc.) because it’s clearly more natural. Behaviour-first messaging makes
your characters more lifelike and puts behaviour at centre stage, allow-
ing for gameplay closer to authored content. But why are you generat-
ing personalities in the first place if you could just generate the
behaviours directly? In a game without exposed reasoning or person-
ality-related gameplay, maybe “random” really is good enough.

274 ■ Procedural Storytelling in Game Design

In the current game landscape, it’s fair for players to assume that
personality elements that are invisible are, in fact, missing. Players don’t
have a good reason to expect game characters to have psychological
depth. You might need to be fairly blunt about your systems if you want
your generated behaviour to be noticed at all, never mind understood
correctly. This means there are at least 3 ways in which normally
advisable subtlety can backfire when implementing personality genera-
tion systems.

“Secret” Systems Are a Risk

When I joined the Age of Conan: Hyborian Adventures (2008) team as
an AI designer, I had been an ardent supporter pre-launch and fairly
engaged player in those first weeks, almost reaching the maximum level.
I must have played 40 or so hours, just for the fun of it. I visited

a dozen areas, observed the quest system and interacted with or killed
thousands of monsters and evil non-player characters (NPCs) on my
road to heroism. In my interview, I wouldn’t have been surprised if they
had asked me questions about the AI behaviours. If they had, I would
have said the scripting in the camps of soldiers had many nice
flourishes: soldiers would sometimes eat, drink, sleep or chat together,
and it made for varied tactical situations.
However, I was stunned in my first few days at work to find that,

actually, almost all NPCs had a deeply modelled motivational system
based on the Maslovian hierarchy of needs. Even characters whose only
purpose was to populate “grinding” zones (masses of creatures spawned
only to be killed en masse for currency or experience points) would first try
to seek safety, then if their hunger meters were high enough, they would try
to eat food, to sleep if tired, to socialize and finally to self-actualize. Those
soldiers had been chatting not because a designer told them to do so; it was
part of their internal, deeply simulated systems. It was sophisticated,
expressive, modular and completely invisible. A fair approximation of
a “living, breathing” world had been given to me, and I’d missed it!
If Age of Conan AI had been structured differently or expressed its

reasoning (hunger, sleepiness, etc.), maybe I could have detected caus-
ality. But the NPCs’ needs grew invisibly, and the core gameplay
(combat, combat, combat) gave me no incentive to watch for those
expressions, even if they had them.

Maximizing the Impact of Generated Personalities ■ 275

So, learning from Age of Conan, I understand why Dwarf Fortress
exposes as much as it does. It’s the safest route to making sure your
effort actually influences player perception. It might be overkill in some
instances, but causality is easier to determine. For those elements we
hide from the player, it seems safest to hint that they are there some-
how. Civilization rulers may have become increasingly complex over the
years, but they’ve also started being more coy about hidden elements,
hinting at them overtly. This piques curiosity and prepares the player
for emotional satisfaction when those elements are eventually revealed.
Non-subtle obscuring allows the player to engage in both sides of the

causality chain, with a bit of personality-interpretation gameplay up
front and then personality-prediction gameplay after.

Subtle Behaviour Patterns Are a Risk

Extreme personalities are rare in real life. If you choose to become
inspired by findings from real-life psychology, such as the Big 5, you’ll
see the most common traits are something like “mildly confident” or
“mostly cooperative”—you know, relatively average. Out of 5 axes, only
1 or 2 tend to be somewhat extreme at most. So you might be tempted
to model your game similarly and make most of your characters mostly
average. Even for characters that are quite extreme (again, realistically),
you might be tempted to make your character act on the one “extreme”
trait only 1 out of 5 times.
This “realistic” subtlety is a trap for the same reason that hidden

systems are: players might never actually see a character act in an
interesting manner. Instead, if you focus your characters’ behaviour on
the limited ways in which characters are extreme, and push it even
a little further than realistic, it’s more likely that their traits will be
observable for players. In the previous example of the accusatory
character in The Shrouded Isle, imagine the character went around
a game world mostly not accusing people. It would be unfair to expect
players to intuit the invisible.
I wasn’t a designer on Crusader Kings II, but I would bet this is a major

reason characters in Crusader Kings II are “Wroth”, rather than “sometimes
irritable”. With more extreme personality types, the systems are genuinely
easier and more available to understand and detect. It can help to lean on
archetypes, as they already tend towards extremes—we’re used to it even in

276 ■ Procedural Storytelling in Game Design

traditional authored storytelling. Ravenclaws in the Harry Potter universe
aren’t just “kinda smart”; they are defined by being the smartest.

Beware Passivity and Non-action

One final note on subtlety: pro-active behaviour is generally less risky to
base a personality on than passive or avoidant behaviours. A character
that wants to do something is more easily perceived and understood
than a character that wants to not do something. This can be a problem
for some character types that are natural in storytelling: those who are
mostly passive, shy, avoidant, or easy-going. Many classic virtues (such
as chastity or temperance) were primarily defined by their preference to
avoid popular activities. These unfortunately make for the least compel-
ling personalities in a generated setting, as they may appear identical to
simply average or disinterested characters.
Arguably, the most successful personality type in King of Dragon Pass

was the trickster, who was the most flamboyant and notable of the
characters, while the rest were mostly measured and balanced in their
approaches. In personal correspondence, David Dunham has said he felt
it worked well and uses similar archetypes in Six Ages.1

There are ways to highlight more passive characters’ patterns, but
generally, the more you can re-orient your design to provide opportu-
nities for characters to express their trait actively, the better.
For example, rather than merely abstaining from sexual activity,

which might take many years to observe, a chaste character could
recoil in horror from sexual content, shame others who engage in
flirting, randomly rant against sexual indecency or actively try to avoid
temptation. All of this is closer to a detectable pattern for the player,
even if a bit silly.

TIP 3: COMEDY IS CLOSE AT HAND
Writers go back and forth about whether satisfying narratives are more
challenging to create in comedies or dramas. For system-driven “stor-
ies”, I think it is clear that good comedy is easier to pull off than good
drama. Why? I’m going to assume briefly that you aren’t trying to fool
the player into thinking your characters are authored content, and I will
assume your players know that your characters are generated. Trying to

Maximizing the Impact of Generated Personalities ■ 277

produce Turing-test-passing procedural storytelling is a bit like trying to
sell roller skates to someone who wants a bicycle—it’s a waste of
everyone’s time and throws away whatever advantage you might have
had. Machine collaborators can produce many unique, fascinating
flavours of narrative, but if you want to create and sell an authored
story, get an author. If you disagree, simply skip this tip.
So, whether it was part of your marketing or core to your gameplay,

your players are engaging directly with the fact that these characters are
system-driven. Nobody is under the illusion that your characters are
people, or even human-authored people! Once players are mentally in the
intellectual space of engaging with AI pro-actively, they are emotionally far
from the submissive position of suspended disbelief or “immersion”.
In order to reach the kind of emotional investment in these little

characters that we get from authored stories, players have to internalize
your systems completely. Only then can they map humanity onto the
characters. That means there are (potentially dozens of) hours between
when the game starts and when drama can begin. I suspect that Dwarf
Fortress might never have become popular if its core gameplay hadn’t
started out less personality-driven and more accessibly survivalist. By
the time someone created an interesting user story involving dwarves’
personalities and culture, they were 40+ hours in.
In the hours of gameplay leading up to the players’ moment of “grok-

king”, it’s much easier to make funny situations than riveting drama. Not
only are the outcomes often surprising, but your characters are the symbols
of people, which gives them an awful lot in common with the setup for
a joke. Jokes typically use symbolic theoretical people and situations
anyway. A/an (insertnoun) and a/an (insertnoun) walk into a bar. …

TIP 4: ALLOW AFTER-THE-FACT INVESTIGATION
In an ideal world, players understand everything that is going on and
are filled with anticipation for an important, complex event. However,
when exploring interactive simulations, especially of the human psyche,
it’s totally reasonable for players to ask “Wait, what just happened?”
Assuming there are multiple characters in your systems (presumably

with different personalities and needs and behaviours), players may not
be focusing on the right place at the right time. It can then be helpful to

278 ■ Procedural Storytelling in Game Design

provide some kind of tool for the players to play detective, and opting
into a deeper level of systems can help diffuse what happened and why.
A few example tools:

• Logs or journals of character actions/behaviours

• Rewind time to re-play and watch events with different actors

• Actual in-character investigations (ask characters questions, etc.)

This can easily add scope to your gameplay features, but as long as
you’re creating gameplay about personalities, maybe it’s what your game
needs anyway.

TIP 5: REACTIONS ≥ ACTIONS
“It’s not what happens to you, but how you react to it that matters.”—
Epictetus
Normally, in order to observe multiple characters’ personalities, you

observe them in sequence following their proactive “natural” inclina-
tions and compare them to other characters. A tells the truth a lot and
B lies a lot, so maybe A is more honest than B. However, you can
process more information per second if you can compare simultaneous
character reactions, especially if they’re extreme, say to someone’s injury
or misfortune, as in Figure 21.3.
Or you can even quickly gauge a whole crowd’s feelings, when the

change is sweeping (Figure 21.4).
It’s worth a quick warning that part of the reason reactions are so

effective and economical is that we have so many expectations sur-
rounding them. Reaction-based personality expressions can become
complicated much more quickly than proactive solo actions. The more
factors in your system, the harder it is for a character to pick
a consistent or even somewhat appropriate reaction. Human priorities
are not particularly elegant or obvious.
For example, when a character dies, does your AI care more that

A) he/she hated the person who died, or

B) that he/she is a kind person, or

Maximizing the Impact of Generated Personalities ■ 279

C) the judgmental friend is in the room, or

D) the person who died did so in an embarrassing way, or

E) the murderer was his/her lover, etc.

But whatever you do to organize your characters’ priorities, if they often
use these in reacting to others’ actions, this can help constantly commu-
nicate their personality, even when they don’t have as many chances to act.

TIP 6: CHANGE IS POWERFUL
People (or at least their needs and desires) tend to change over the course
of their lives, due to experiences, learnings, traumas, and/or nature.
Although it might seem counter-intuitive, having someone’s person-

ality change at key moments can actually be more compelling than the
personality itself. In the face of adversity (or the ravages of time), some
people get weaker/more flawed, some get stronger/less flawed, and some
get weirder. That’s how life goes.2

Darkest Dungeon hinges some of its most compelling gameplay
moments (the gain and loss of quirks) on moments of crisis and character

FIGURE 21.3 The Sims 4: Kids Room Stuff (2016). Courtesy of Electronic Arts.

280 ■ Procedural Storytelling in Game Design

personality changes. Designer Tyler Sigman confirmed to me that quirk
gains are relatively arbitrary, with some broad exclusions or inclusions
based on mission content. Crucially, transformation is fascinating on its
own as a learning moment with the character and doesn’t need deep
explaining of factors and motivations, assuming players are given enough
information (state 1, trigger, state 2) to invent their own reasoning.
Whether the formerly Brave character becomes Cowardly, or a formerly
Unyielding character becomes a Warrior of Light, the player can come up
with their own meaningful narrative explanation for the transformation.

SUMMARY
Although the RTS and strategy genres have been dabbling in generating
character personality types for decades, personality as a distinct game-
play system is a relatively new subject, without the decades of explora-
tion and discussion of terrain or text generation.

FIGURE 21.4 A group of co-workers react to the player’s status. Redshirt (2013).

Maximizing the Impact of Generated Personalities ■ 281

In summary, to make your personalities have the greatest impact on
your game and players:

• Chicken or egg?: Have a clear vision for whether reasoning
powers motivation or vice-versa, from the engine and from the
player perspective.

• Beware hiding too much: Be as clear as possible about what’s
under the hood.

• Beware “normal” personalities: Extremes are easier to see and
understand.

• Beware passivity: Actions are easier to see than non-actions.

• Embrace the comedy: Your AIs were never human anyway. Sorry.

• Get out the magnifying glass: Empowering a little player detec-
tive-work can help defray chaos.

• Reactions are high-value: Two characters + one catalyst =
2 personalities.

• Transformations are gold: Even if your traits or behaviours are
subtle, a strong and clear change can be compelling on its own.

NOTES

1 King of Dragon Pass is an excellent game with procedural personalities
that doesn’t use many of my tips. David Dunham explicitly warned me
that subtlety can be helpful when trying to tell a convincing story. He
makes a very good point. I would say to choose your design risks
carefully; if you are willing to risk players missing out on your systems,
what other risks will you mitigate?

2 Though at least one study shows that we tend to become slightly more
confident, conscientious and emotionally stable throughout adulthood
but decrease in sociability and openness to experience in older age.
Roberts, Brent & E Walton, Kate & Viechtbauer, Wolfgang. (2006).
Patterns of Mean-Level Change in Personality Traits Across the Life
Course: A Meta-Analysis of Longitudinal Studies.

282 ■ Procedural Storytelling in Game Design

CHAP T ER 22

Procedural Characters in
State of Decay 2

Geoffrey Card, Jørgen Tjernø, and Matthew Bozarth
Undead Labs

One of the core features of State of Decay is permadeath. You are
trying to survive in the zombie apocalypse, and your decisions

matter because when characters die, they are gone forever, and you will
never see them again. That isn’t exactly true. While watching people
play the original game, we learned that pretty often players started the
game over from scratch when they lost one of their bespoke starting
characters. As the new game began, players found the characters they
had lost alive and well.
That is certainly a valid way to play, but as we were designing the

sequel, we realized that we wanted to double down on that original
vision. We wanted to create a world where it meant more when
characters died, because players would literally never see them again.
That meant we needed to generate a near-infinite series of characters for
players to feed into the meat grinder, one by one.
While many of the characters in the original game felt random, that

was actually an illusion. They had random names, but all of their traits
(their life history, their skills, their personality quirks, their physical
appearance) were handcrafted, with a specific set granted to each
character. There were actually only a couple hundred possible charac-
ters in the game. To jump from a few hundred possible characters up to
a number that is effectively infinite meant we needed a system that
could generate new ones on the fly.

283

It couldn’t just be any system. Remember, one of the main purposes
of the system was to make the deaths of our characters more mean-
ingful to players. That meant not only making them unique, but also
making them authentic and relatable. These characters needed to be
random without feeling random, or players wouldn’t be able to connect
with them, and their deaths would be empty and meaningless. So what
can go wrong with a procedural character generator to make the
characters seem fake and unconvincing? The problems fall into two
broad categories: Blandness and Contradictions.

BLANDNESS
If it feels like every character is Generic Human Number Five, then why
should a player care which one runs headlong into danger? (See also:
Chapter 1).
At first, there seems to be a sort of tension between these two. After

all, the easiest way to avoid contradictions is to make characters more
bland. Give them fewer distinctive features that could possibly conflict,
and you’re safe from contradictions—but no one cares. Add more
distinctive features, and your characters get more interesting—but you
also start generating weirdos now and then that nobody believes.
Real people are distinctive and complex, and so are all the best

characters in the stories we read. If we wanted our system to create
characters that seemed like they might have been authored by a real
human being, we needed to build one that could make distinctive
choices without making a mess.
Avoiding blandness was the first problem. We knew that no matter

how well we did, every long-term player would eventually start
looking at all our characters with glazed-over eyes. Our challenge
wasn’t to ensure that every single character stood out like a movie
star. That’s impossible. Instead, our challenge was to make sure that
some characters stood out like movie stars, and when players looked
more closely at those characters, they were built in such a way that
players could easily uncover a story about who they were as distinct
individuals.
So we designed the system from the inside out to be about telling that

story. All of the gameplay-relevant aspects of a character (their health,

284 ■ Procedural Storytelling in Game Design

stamina, skills, etc.) were derived from one central set of traits. While
the numerical stats were bland and boring, the traits all had colorful
player-facing story descriptions that could say a lot about who each
character was.
We made some rules about how those traits were expressed:

1. Traits were always written in the first person. There wouldn’t be
an omniscient narrator telling you about each character. The
characters would describe themselves, in their own voices.

2. Most traits offered a story from the past or a specific opinion
about an issue, rather than just a description of the trait. This gave
characters something to talk about in the description and a chance
to make an impression on players.

Then the goal was to structure the characters so that the features that
were most interesting to players on a mechanical level would lead them
back to the traits, which were designed to tell a story.
A character’s name is the first aspect a player learns and is the focus of

a lot of attention. So we created a nickname system that would occasion-
ally override a character’s more traditional name with an unusual nick-
name derived from the traits. A character who used to sleep in a tree to
avoid zombies might be named “Squirrel,” for instance. A player seeing
the name might ask, “Why are they called that?” and go exploring on the
character sheet to find the answer from the traits.
Characters also had skill specializations and hero bonuses, which were

highly visible benefits that players put focus and effort into unlocking. We
set up both to try and catch players’ eyes and make them wonder, “Why
does this character have this feature?” The process of searching for the
answer would lead them straight to the backstory contained in the traits.
The hope was that players would only need to do this a few times to get
the overall impression that all of their characters were interesting and
unique—even the ones they never bothered to take a deeper look at.

CONTRADICTIONS
If characters seem to have sets of traits that would never occur in actual
people, then players are put off by them and can’t suspend their disbelief.

Procedural Characters in State of Decay 2 ■ 285

A good author is often able to create a character that is full of
apparent contradictions and then tell you a story that helps you accept
and understand that character. But we weren’t telling a unique authored
story about each character, so we didn’t have that luxury.
Players of State of Decay 2 know that their characters are procedu-

rally generated. When they see characters with traits that seem to
conflict, they don’t think, “What an interesting character; I can’t wait
to see what the author makes of these contradictions!” Instead, they
think, “Whoops, the random character generator made something
dumb.” So the standard for what counted as an unbelievable contra-
diction was going to be more stringent for us than it would have been
for a more traditional storyteller. That meant we needed rules.

CONTRADICTION WINNOWING
We needed a system that would choose one trait, and then as it chose
the next trait would winnow out all of those that might conflict with the
first. As it continued to select trait after trait, the list of potential options
would get smaller and smaller. We set it up so that each trait could be
associated with an arbitrary number of tags. A trait tag would be
outfitted with rules for how often it could appear on the same character
and what other tags it could appear alongside.
For example, the career tag had a rule that it could only appear on

a character once. Once the game applied a career trait (like firefighter,
gas station attendant, or lichenologist), all other traits with the career
tag would be eliminated from consideration. No character could have
more than one career in the game.
In real life, of course, many people have multiple careers. But on

randomly generated characters, seeing two different pre-apocalypse jobs
doesn’t make characters seem interesting and complex. It makes them
seem like mistakes.
Tags could also explicitly single out other tags to eliminate. For

example, at one point, a tester reported that they got a character who ran
marathons but was also a couch potato. Now, in an authored story, you
might be able to make that work. But in our game, it felt wrong. So we
created a new pair of tags, called active and inactive. We applied the active
tag to any trait that indicated that the character loved to move around and

286 ■ Procedural Storytelling in Game Design

do physically challenging things, and we applied the inactive tag to traits
that made the character sound physically sedentary. Then we made those
tags mutually exclusive. So, once a character received a trait with the active
tag, all the traits with the inactive tag were eliminated and vice-versa.
This system ended up being even more versatile and useful than we

imagined. At one point, for instance, a designer requested that we make
it so that all starting characters were limited to low-level skills, so that
players had plenty of room to improve and customize them at the
beginning of the game. All we had to do was create an invisible trait
with a beginner tag, and apply it to all the starting characters, then
create an advanced tag and apply it to all the traits that offered
advanced skills. If those two were mutually exclusive, then no starting
characters would ever have advanced skills. It didn’t have anything to
do with how convincing the characters were on a story level (which was
the reason we created the system), but we could still pull it off.
Adding new tags to a thousand different traits can be tedious, though.

Anticipating that, we chose to structure our trait list as a hierarchical tree,
with groups and subgroups of traits nested inside each other. Then we
could apply a tag to an entire group of traits at once, rather than needing
to repeat the effort for each individual trait. So, when we got the request to
eliminate advanced skills from starting characters, rather than drilling into
each trait and applying the advanced tag where necessary, we dragged and
dropped all the relevant traits into a handful of new advanced subgroups,
then applied the new tag to the subgroups instead.
This winnowing system was ideal because we didn’t need to think of

everything up front. Throughout development, testers or developers
would report new pairs of contradictory traits (or other concerns), and
each time, it was a simple matter to create a few new tags and eliminate
those issues from the game.

IDENTITY CONTRADICTIONS
Another type of contradiction that we knew we needed to handle
carefully had to do with character identities. A character’s name,
appearance, gender, and voice always needed to line up in a way that
felt like they could belong to a real person. Again, the standard for
believability here was much more stringent than it is in reality. Life

Procedural Characters in State of Decay 2 ■ 287

circumstances can create all kinds of interesting people who challenge
expectations and stereotypes, and we wanted to represent those people
however we could. But if every character was a jumbled mix of
ethnicities because we poured all the elements of identity into one
giant pool and chose them at random, it wouldn’t look like we had
created interesting, unique people. It would look like we weren’t aware
of real-world cultural identities or that we didn’t care.
Our goal was for players who came from different backgrounds to

have a chance to run across characters who felt genuinely familiar to
them: “This is one of my people,” which was especially important to get
right for players who rarely had that experience at all. So we created
a similar winnowing system, in which each name, appearance, gender,
and voice had rules that could focus future choices on options that
would feel correct and appropriate to players. But we also built in rules
for weighting those choices so that we could focus most characters on
common combinations of features (such as a male voice peppered with
Spanish words lining up with a Latino appearance, a Spanish first and
last name, and a Mexican nickname), while still allowing rare characters
that step across those lines (like giving that same character a more
African appearance and a common English last name). One rule we
developed while working with cultural backgrounds was to go highly
specific, rather than going broad.
It is very easy for a developer with one specific cultural background

to view other cultures and places as monoliths, where everyone is the
same. This is a massive mistake, which could result in some very
awkward experiences for players who are intimately familiar with the
cultures we are trying to depict.
For instance, the nation of India is internally as diverse as the

entire continent of Europe, with a rich variety of different cultures,
languages, religions, and naming traditions within its borders. That
meant that if we created an “Indian” cultural background with
“Indian” name lists, there was a good chance that most of our
characters would come across to Indian players as though they were
awkward mishmashes of different backgrounds and not truly Indian
at all. So instead, we started with one region of India, and themed all
our names to come from that one place. We did research on the most
common names in that area and ran our selections by people whose

288 ■ Procedural Storytelling in Game Design

families came from that region, to help us catch errors and to come
up with appropriate nicknames and diminutives that would feel
authentic to players.
We always tried to err on the side of caution and avoided including

something if we had any doubts about whether it would sound appro-
priate in context. That means there are some very common Indian
names (like Patel) that do not yet appear in the game, but the characters
that do appear should feel more authentic as a result.
Because of the era of game development that we live in, we are free to

continue to add new cultural backgrounds to flesh out our representa-
tion of Indian Americans, as well as any number of other cultures and
add them to the game in free content updates after release.
As a side note, it was fascinating to explore some of the distinctions

that different cultures brought in for naming characters. At one point,
we were vetting our name lists past members of the Microsoft localiza-
tion team, to make sure we had done everything we could to catch
potential mistakes. The translator from Spain went through our Spanish
nickname list with a metaphorical red Sharpie, eliminating almost
everything we had included and making incredulous notes about these
nicknames not being real. At first, we were taken aback. How did we get
everything so wrong? Then we ran the same name list by a member of
the team who grew up in Mexico and got the opposite feedback. These
nicknames were absolutely real, and not including them would make
Mexican characters seem unrealistic. So we realized our mistake. We
had collected nicknames from Mexican sources on the Internet but put
them on a nickname list that was universal to all Spanish-speaking
backgrounds. They were distinctively Mexican names, to the point that
a player from Spain or the Philippines or the Dominican Republic
would find them completely foreign. What we needed to do was copy
those nicknames, paste them into our Mexico-specific list, and eliminate
them from the general population. Luckily, we had the infrastructure
already in place to do just that. That infrastructure also allowed us to
support other unique naming practices that members of other cultures
brought to us.
Our Lao advisor told us about seu lin—informal nicknames that have

nothing to do with a Lao character’s given name but are used almost
exclusively in place of a first name. Those took advantage of an

Procedural Characters in State of Decay 2 ■ 289

independent nickname list in our data structure that few other cultures
used. (Unfortunately, we couldn’t include our advisor’s own seu lin,
which was Poo. There were several cases where a legitimate and
awesome name from another language had to be eliminated because in
the context of a game made by English speakers, it would come across
as parody instead of representation, even with the best of intentions.)
In another case, our Ethiopian advisor reacted poorly to the first mix

of English and Ethiopian names we tried, until we came up with the
idea of including the Old Testament name list (e.g., Abraham, Isaac,
Ishmael) over the common English list. Suddenly, the characters began
to feel more like his friends and family. That highlighted the importance
of letting our cultural backgrounds flexibly mix and match a variety of
weighted name lists, so that we could respond to that kind of feedback
in minutes by simply referencing an additional list, rather than spend-
ing hours writing new custom name list that incorporated both Ethio-
pian and Old Testament names.
That feature also made it possible to include the list of common

English given names as an option on nearly every cultural background,
to reflect the reality that people whose families come from all over the
world tend to converge on the same list of names after a generation or
two in the States, while their last names remain a distinctive record of
their ancestry.
We received feedback soon after release from some game critics who

said that the amount of cultural variety among our characters was
unusual and refreshing, which actually highlights one of the great
values of using procedural generation in the first place. A developer
from a specific cultural background is always going to show some
unconscious bias in one direction or another when making and placing
bespoke characters one at a time. It’s nearly impossible to keep track of
everything you’ve done, and everything you think you should do, and
avoid making mistakes.
By setting some initial goals, and then assigning an automated system

to stick to those goals for you, it is much easier to avoid stumbling into
biased representation—though, of course, there are still plenty of
opportunities to introduce content that is just wrong. When you do,
the system isn’t going to know any better and will naively present your
mistakes to the player.

290 ■ Procedural Storytelling in Game Design

ORDER OF OPERATIONS
So far, this chapter is mostly about all the awesome things that went
right with our system, but there is one major place it broke down,
and we would love a chance to try again with the benefit of hind-
sight. The process of generating a character has a specific order in
State of Decay 2. Certain decisions are always made first, and others
are made later.
While the trait tag system is set up so that the character generator can

select traits in any order, and the list will always be winnowed appro-
priately, most other character features are far less flexible. For instance,
the generator needs to know the age, gender, and cultural background
of a character before selecting the voice. We had a bug at one point, and
the generator was selecting the voice too early, before the age was
determined; we ended up with characters who looked barely out of
high school speaking in cracked, gravelly voices, while weathered old
veterans were speaking like fresh spring chickens. We needed to push
back the voice to be one of the very last choices that the character
generator made, but that led to problems of its own.
One of the challenges of State of Decay 2 is the fact that its characters

are so flexible. In the original game, we had one voice assigned to
deliver news over the radio, and after years of playing the game, our
players were so tired of Lily Ritter’s voice (despite the performance
being wonderful) that they wanted the character to die. She could not,
because her role was so critical to the game. In the sequel, we decided to
eliminate that role (the ubiquitous, immortal radio character) from the
game and decided that every character should be able to play every role
in the community.
That was a very expensive decision. We ended up with 14 playable

voices (more than double the number in the original game), each of
which needed to be able to serve almost every purpose, which meant
that any time we wanted to add a few lines to the game, we needed
to book sessions with 14 different actors. Late in development, it
became clear that we needed more voiceover to support our missions
than we could possibly afford to record 14 times. So our lead writer
suggested that we split the lines up and guarantee that certain roles
in our missions were always played by certain voices. Then he could

Procedural Characters in State of Decay 2 ■ 291

record each of those lines only three or four times, rather than 14,
and we could get a lot more voice into our story.
We knew that this was not what our system was built to do. It

was built to generate enormous variety not enforce tight con-
straints, but it could technically be pressed into service to make
this work, so we decided to go for it. It was the right call—but it
came at a cost.
Because voice is one of the last choices that the character generator

makes, it is the absolute worst place to enforce tight constraints. If you
constrain the first or second choice that the generator makes, that’s no big
deal. The generator is already built to commit to early choices and use
them to winnow down later choices, and everything runs as it should. But
if you constrain the last choice, and the generator doesn’t know you’ve
done that until it gets to the end, then it is very likely that earlier choices
will eliminate all possible options for that last choice. For instance, if we
decided that the only voices that a character was allowed to have were
voices A, D, R, and Q, it turns out that there are no young-sounding
female voices on that list. So if the character generator randomly decides to
make that character female and young, when it gets to the voice-selection
stage, it will go, “Whoops, there aren’t any valid voices. Guess I’ll pick
a random one and hope for the best.” For most characters, this fallback
would be tolerable. The character might sound a little weird, but it’s not an
enormous deal. But if we’re spawning that character specifically to speak
certain lines in a mission, and those lines were only recorded for four specific
voices, it’s a disaster. The line isn’t spoken at all, and there’s an error. And
because of the way the process was built, we could never even be sure
which constraint was the most instrumental in creating the problem.

ORDER OF OPERATIONS, REDESIGNED
We spent so much time chasing down specific bugs where a character
would show up to a mission with the wrong voice that it made us wish
we could rethink our entire approach. If we had the chance to build
a system like this from scratch, we would make two major changes to
the way it is structured. First, we would build every feature of
a character the way we built the traits. All features would share the
same set of tags and the same rules for limiting and excluding them as

292 ■ Procedural Storytelling in Game Design

a character was assembled. The fact that different character features had
different rules, and needed dedicated code to make them winnow each
other appropriately, ended up burning unnecessary time and adding
unnecessary complexity. For instance, when we wanted to make traits
that were specific to old or young characters (like arthritis or college
freshman), we couldn’t just include an old or young tag and leave it at
that. We had to create an entire subcategory of traits that only applied
to each of those age groups, because in our game, age is
a fundamentally different type of feature from other traits.
Unifying all character features under a single exclusion system would

have simplified this immensely, and we probably would have taken
much better advantage of it, offering more traits that sounded like they
spoke from a younger or older perspective. Second, because we can’t
always predict which features of a character will be constrained, and
how that will play out in the step-by-step generation process (leading to
bugs like the ones with all the mismatched voices), we need to build
into our system a means of “backtracking” when it hits a dead end. This
means that when the system has exhausted all the possible options for
a particular character feature, we should let it undo a previous choice
and try another. So if it runs into a situation where there are no valid
voices, it can step back and select a different age, gender, or cultural
background and try again, as many times as it needs to.
This way, the rules are guaranteed to eventually find a match if one

exists at all, eliminating most of those cases of mismatched characters
coming out of the system because they were forced to ignore con-
straints. If there are still cases left where characters can’t generate
properly, it will be because their constraints are mismatched on an
obvious, fundamental level that should be much easier to diagnose and
fix in content.

SUMMARY
So in the end, we learned that the best decisions we made were the ones
that allowed early choices about a character to freely constrain later
choices in a way that was unhindered by locked-in decisions about
structure and order.

Procedural Characters in State of Decay 2 ■ 293

People, by their nature, are weird and complex, and we each start
from different places when fashioning the stories that we tell ourselves
to make our identities feel rational and consistent. Procedurally gener-
ated people can feel more like us when they put themselves through
a similar process and use their own voices to tell us who they are.

294 ■ Procedural Storytelling in Game Design

CHAP T ER 23

Plot Generators

Adam Saltsman
Finji

If a writer of prose knows enough of what he is writing about he
may omit things that he knows and the reader … will have
a feeling of those things as strongly as though the writer had
stated them.

Ernest Hemingway, Death in the Afternoon

One may tell the reader that the character went to a private
school, or one may tell the reader that the character hates
spaghetti; but with rare exceptions the character’s feelings must
be demonstrated: fear, love, excitement, doubt, embarrassment,
despair become real only when they take the form of events.

John Gardner, On Becoming a Novelist

B ack around 2008 or 2009, the game design community was talking
a lot about the resurgence of procedurally generated content. I was

playing games like Dwarf Fortress, Thrustburst, Spelunky Classic, and
Captain Forever at the time, and fellow designers were talking about the
capacity these games have for generating new “player stories.” A lot of
designers were claiming that these games were essentially “story gen-
erators,” and there was a lot of evidence for this, with players excitedly
explaining unpredictable and surprising incidents they experienced in
the games.
I didn’t know it at the time, but LARPing (Live Action Role-Playing)

communities already had their own term for this: froth. Froth is

295

a succinct way of acknowledging the way we tell each other stories after
a match and the way we construct narratives about all the cool stuff that
happened during the game—that whole phase of play that is sort of
after the game but sort of not. It was only recently that I realized that
the hilarious long-form blog posts I’d been reading about doomed
Dwarf Fortress colonies were the digital equivalent of this same phe-
nomenon. Before Bekah and I had kids, we were avid Pandemic players
and used to do the same thing after a close game. “I can’t believe we
saved Lagos! Sacrificing Paris seemed so risky but spending all those
points the next turn really paid off!” And so on. To me, it seemed like
games that were good at generating stories had good froth, and froth
is fun.
In 2014, I began work on Overland, a turn-based video game about

some folks on a post-apocalyptic road trip. While talking about design
goals with our new team, one thing we kept coming back to was
wanting to make a game that had good “froth.” We wanted to make
a game that generated interesting and surprising player stories—stories
that were so interesting and so surprising that players would want to tell
their friends later. So we made a new item on the to-do list: “story
generator.”
Thankfully, I knew all about those from playing all those other

procedural games. But it took me a long time to realize that for games
like this, the player is the story generator, and what we actually needed
in the game was a plot generator.
Plot: the actions and events that take place in a story or narrative.

Keep the verbs and nouns, throw everything else away. For example:
“Alice got an avocado at the store.” Or “Jeff crashed his car near the
lake.” Or “Morgan fell and got a scrape.” Subjects verbing nouns at
locations. You get the idea.
Story: the sequencing and “editing” of the plot and the prose that is

used to communicate the nature of these sequences to the reader,
including character motivations and so on. For example: “Alice nudged
the stem of the avocado out of the way to check if it was still ripe,
a trick she learned from her mom. She winced but put it in the basket
anyway.” Please note: These definitions are not intended to be used
outside of this chapter, ever. These are clarifications of tools, not
theoretical structures.

296 ■ Procedural Storytelling in Game Design

Plot is made up of the events and materials of the story, whereas the
story is the whole enchilada, sentences and everything. Overland is not
unique or special for needing to be a plot generator. In fact, quite the
opposite—realizing that other games like ours were plot generators, and
not story generators, is what led us to this conclusion in the first place.
I was excited about this change of plans. Plot generators have a lot of

advantages. You don’t have to write as many tricky sentences, for one.
Localization is much, much easier, and we could completely sidestep the
uncanny valley of trying to generate a believably written story, that
humane prose, with all the complexity and nuance that comes with it.
On some level, all games are plot generators already, so it was a matter
of refinement, as opposed to pure creation. Plot generators have a lot of
things in common with the way story telling works on a lower level.
Think of the way a skilled author might omit certain details of
a conversation, having confidence that the reader can fill in the blanks
in a way that is powerful and evocative and still gets the idea across just
the way the author wanted. Think of the way a good film montage
connects two previously unrelated images to invoke in the viewer
a startling realization.
Good plot generators function much the same way, finding surprising

and interesting ways to arrange the actions and events of our game.
Previously unrelated interactions butt up against each other and create
new meanings. Earlier, opening the car door meant nothing, but now,
now it means something. And plot generators leverage the players
themselves to be the story generators. The prose, the sequencing, the
motivations, the causes and effects—these things are left up to real live
people. The generated plot is like a scaffolding or framework upon
which players weave the story in their own words.
So, the good news is that if things happen in your game, your game is

a plot generator; good job; that was easy; everybody take five; we’re
done here! For example, Tetris is a plot generator. “An L block fell.
Then a T block fell. It fell in a bad spot. Then a square fell. It had been
a long time since an I block appeared.” NBA Jam is a plot generator:
“Detroit scored two points. Then Houston scored two points. Then
Houston scored three points.” I wouldn’t say these are bad plot
generators, as they serve these games well, but they’re definitely repeti-
tive plot generators.

Plot Generators ■ 297

A repetitive plot generator can only generate a handful of actions or
events. Of course, the context can shift or change in meaningful ways
that add a bit of complexity. After all, the three-pointer that wins the
game is on some level a fundamentally different three-pointer than
some random shot in the first quarter, but the main actions or events
for most video games are pretty limited. For example, in the earliest
versions of Overland, players did not have a ton of options at their
disposal. You could smack monsters with a stick, get nibbled on by said
monsters, maybe heal up with a first aid kid, look for some stuff in that
dumpster over there, die, or drive away. Those were all the options, and
most of the time, it was even more limited and repetitive than that.
Driving away and getting healed up were pretty rare events … and
dying would end the game. So most of the time the “plot” that was
coming out of an Overland playthrough was “smack with stick, look in
dumpster, smack with stick, smack with stick, look in other dumpster,
smack with stick,” ad infinitum. Ad nauseam, even. But that’s not that
bad a starting place. A lot of games, including mine, struggle to get past
just an endless string of “smack with stick.” Deriving an interesting,
human story from the output of our repetitive plot generator—“smack,
search, smack, smack, search, smack”—was a chore. Maybe if the plots
our game generated were less repetitive, then the story the player
wanted to tell would be less of a chore. Maybe it would be an interesting
and integral part of the game. Maybe then we would get that sweet,
sweet froth.
So we started looking for things that both fit into our game and

meaningfully altered the plot. Sometimes these things were obvious, like
bringing a character back to life with CPR. Sometimes these things were
not so obvious, like how patting a dog is totally worth an action point
even if you don’t get anything from it. Sometimes these things
were second-order discoveries, like how changing player movement to
include diagonals allows for emergent narrow escapes between kitty-
corner obstacles.
We also looked at how story telling worked in related games. For

example, in both the modern rogue-like FTL: Faster Than Light, and
classic edu-game Oregon Trail, scenarios and encounters may be pre-
faced by popup dialogs with a narrative choice or a player choice. For
example, maybe someone is stranded and you can choose between

298 ■ Procedural Storytelling in Game Design

having them join your crew or killing the person and taking their… jew-
els, or something. We thought about a lot of scenarios like these and
tried to make the associated setups, actions, and outcomes be things
that could happen in the game, in the level, instead of just in the dialog
popup.
In Overland, when you meet a stranger who can join your team,

there’s no popup dialog with a couple of paragraphs of generated story.
Instead, the stranger shouts a brief greeting. “I got left behind, please
take me with you!” maybe, or, if there’s a wrecked car nearby, “She’s
running on fumes, can I join up?” or, if the stranger is trapped behind
a barricade, “Get me outta here!” It’s practically Shakespeare, I know.
Next, we take the events that would normally be in a story-based

popup dialog and break them up into different atomic actions: Move,
Invite, Attack, Loot, and so on. Rather than simply clicking a button on
a popup, players maneuver their characters across the gameplay grid,
click on the stranger, and use the Invite action to have them join the
group, use the Attack action to fight the stranger, or use the Invite
action but only to grab their inventory items and then abandon the
stranger. Suddenly, we have a little bit of new granularity here: “Dupe
stranger into giving up items” is emergent, rather than just a button on
a menu. It’s something that players can invent on their own (and tell
a story about later).
That’s neat, but what I think is even better and more important is the

space this approach provides for unexpected disasters and the resulting
improvisations. For example, players might decide “I shall save this lost
soul, noble traveler that I am,” and then absolutely fail to accomplish
this. Maybe they can’t get to them in time. Maybe a wildfire blows
downwind and engulfs them and/or the person they’re trying to save.
Maybe a player decides to attack the stranger but realizes too late the
stranger wasn’t traveling alone, and now there’s trouble. Maybe the
stranger doesn’t even want to join the player’s group, but after the
player helps with injuries, the stranger has a change of heart.
As we expand this approach to things like meddling with other

scavengers, trading at camps, and visiting special sites, it keeps getting
richer. These new actions and events all contribute to the plot generated
by an Overland playthrough. Moments and sequences like these help
construct the scaffolding that players use to tell their stories. They help

Plot Generators ■ 299

players make their adventures more interesting, more relatable, and
more human.
For a while, though, it felt like no matter what we did, making the

game actions better, and thus making the plot better, didn’t actually pay
off unless players were emotionally invested in the little characters.
Some game actions reinforced that need, like patting the dog, but most
things you could do were still basically resource-oriented. Ultimately,
our art director just made all new character models that were cuter than
our old stoic characters, and suddenly players were able to close the gap.
They were having an easier time connecting with their group now. We
even changed the UI to foreground your group and double down on
that connection. Then, and only then, did all this work on generating
cooler plots start giving better results.
In the meantime, though, I did a few other experiments. The first

thing I tried was coding up a system for generating post-apocalyptic
backstories, for when you meet strangers along the way. I used a simple
find-and-replace type of formula, with some support for nesting, and
the output was pretty distinct and interesting after a single day of
development.
There just didn’t seem to be any place to put it in the game. When

were players going to stop and read a paragraph or two about the
backstory of some rando they scooped up en route? This seemed like an
unrealistic expectation for a lot of the future players of the game, and
thus something that would be hard to justify (and localize). So
I removed anything and everything remotely resembling a written
story and instead gave characters lots of “traits”—their age, their home-
town—and then some adjectives like “lonely” or “angry” or whatever.
This was sure to be a home run, as the characters now had relatable
emotions.
Surprise! It turns out that’s not how writing works. We eventually

figured out that if we wrote a couple of very short stories for each
player, we might get somewhere. Inspired by Hemingway’s six-word
micro-story, “For sale: baby shoes, never worn,” we worked on repla-
cing the adjectives with micro-stories that would evoke the feelings of
those adjectives. Even cheap attempts, like “Grew up an orphan,” or
“Used to attend anger management classes,” were huge improvements.
Later, I discovered the John Gardner quote I used at the front of the

300 ■ Procedural Storytelling in Game Design

chapter and felt quite silly about my epiphany. Apparently, this is old
news to actual writers.
For Overland, two is a good number of micro-stories per character,

and we are currently getting some mileage out of randomly selecting
a micro-story about a character’s “past” and another about the “pre-
sent.” Together we call these “couplets,” and they’ve been really helpful.
An example couplet might be something like “Skipped prom to watch
the new monster movie. Hoping to find a dog.” Past and present
combine in a montage-like way to evoke feelings and transitions, and,
we hope, to emphasize the difference in characters’ lives before and after
the end of the world.
It might seem like it would be a problem if the randomly selected

micro-stories were accidentally contradictory, but it turns out those
combinations are the funniest or most unsettling. For example, if an
Overland character’s couplet is something like “Hated camping as a kid.
Sleeps under the stars now,” players can imagine this character is
frustrated, has grown up, or is afraid, or all three. So while these two
micro-stories are a bit contradictory, they are more interesting for it.
Basically, database collisions can be a good thing. Rather than keep

up some complicated system of filters or weighting or anything, we
just work on writing micro-stories that can combine with anything
from the other column. Even though occasionally it’ll produce some-
thing creepy like “Tortured squirrels when younger. Hoping to find
a dog,” which leaves a lot of uncomfortable ideas to the player’s
powerful imagination.
The other somewhat notable feature of these “micro-stories” is that

the only real generative component is the mashing together of the two
columns. Within each sentence, there are only gentle nudges to correct
gendered pronouns. Earlier, when we were working on the plot gen-
erator, it was all about getting rid of all the words and making every-
thing into systems. Here, we were getting the best results by removing
almost all the systems and essentially drawing pre-written “cards” out of
two separate “decks.” The parallel that I enjoy as well is that all of these
little sentences are mostly about plot points. They’re about losing
something, finding something, hiding something, missing something.
The emotions and abstract feelings are derived from the described
events and the juxtaposition of the two “cards.”

Plot Generators ■ 301

Ultimately, these little background story couplets aren’t earth-shaking
features, but combined with the cute new character models, they go
a long way toward strengthening that player-character connection, and
that strong connection is the thing that makes the generated plots
resonate and makes the bigger variety of events actually matter.
As I move on to new projects in other genres, all these weird little

discoveries (mostly re-discoveries) about plot generators and how they
work when real live meat-people are playing your game and what kinds
of scaffolding we should be providing, these are the things I am
thinking about the most. What is it about visual arts, written language,
music, and UI that help players feel connected to their in-game counter-
parts? What sorts of actions and events would be interesting to include?
Will absolute strangers build stories around the frameworks we’ve
provided in our weird little game? Will these same strangers tell their
friends about the adventures they had with us?

302 ■ Procedural Storytelling in Game Design

CHAP T ER 24

Generating Personalities
in The Shrouded Isle

Jongwoo Kim
Kitfox Games

T he Shrouded Isle is a human sacrifice cult simulator that uses
generated personalities to depict moral quandaries. The player is

the high priest of a small island village that makes ritual sacrifices to
a slumbering dark god in preparation for his prophesied awakening.
The core gameplay revolves around maintaining the villagers’ faith by
investigating, manipulating and killing the possible sinners in the com-
munity. Using a minimal, trait-based approach to personality genera-
tion, The Shrouded Isle creates a cast of flawed, believable characters in
each playthrough. By having the characters’ behaviour conflict with the
player’s goals, the game procedurally presents the player with difficult
moral choices.
The project began as a game jam entry for Ludum Dare 33 in

August 2015, the theme of which was “You are the monster”. Rather
than depict a literal or physical monster, we wanted to explore why
someone chooses to be an “administrative” monster, ostensibly serving
the greater good but nonetheless harming the people in their commu-
nity. Our entry, The Sacrifice, was well-received for its unique aesthetic
and theme, so we decided to rebuild and expand the game for commer-
cial release. Two years later, in August 2017, we released the original
version of The Shrouded Isle for Windows and OSX. Due to positive
critical and player reception, we released a free expansion called Sunken
Sins in December 2017.

303

The challenge in designing The Shrouded Isle was two-fold. First, we
needed to humanize the townspeople so that the player perceived
them as individuals with personalities, rather than stat sheets to be
optimized. Second, the player needed compelling reasons to make
harsh decisions. Although we could have accomplished our goal with
extensive scripted content, we decided early on to take a systemic
approach, generating the townspeople and depicting the theme
through the player’s interactions with the characters. This would
better immerse the player and present in each playthrough, making
the player engage with the townspeople in earnest and own the
consequences of each choice. Ultimately, character generation in The
Shrouded Isle owes its success to the effective use of few core elements
to create gameplay situations in which the player could interpret the
character’s personality.

CHARACTER GENERATION
Character generation in The Shrouded Isle has three main elements:
family, traits and aesthetics. A character’s family establishes social
context (Figure 24.1). Every character belongs to one of the five
Great Houses: Kegnni, Iosefka, Cadwell, Efferson and Blackborn. At
the start of the playthrough, each House is assigned an average of six
characters, for a total of 30 generated characters for the town. While
the family members’ relationships are not explicitly defined, each
House is given at least one male and one female member with elderly
portraits to represent the parents, and two to five young members to
represent the children. No new characters can be gained during the
playthrough. The limited number of characters and the implied family
relations create a sense of permanence and history for the generated
characters.
Each House has a unique role in the cult, which requires its members to

perform a particular ritual when employed as the player’s advisor (Table
24.1). The cult follows five values—Ignorance, Fervour, Discipline, Penitence
andObedience—and each house is responsible for one of them. For example,
an Efferson advisor will always perform “Flagellate Sinners” to improve the
town’s Penitence. In the rare case that a character’s personal traits match the
family specialty, the character becomes an exceptionally effective or

304 ■ Procedural Storytelling in Game Design

ineffective advisor, making them either the favourite child or the black sheep
of the family. Thus, family specialty adds a layer to a generated character’s
personality by representing public persona and reputation.
A character’s private behaviour is represented through traits. Each

character is assigned two traits: a virtue, which improves one of the
cult’s five values, and a vice, which impedes it. Characters cannot gain
any more traits, though randomly triggered events and new mechanics

FIGURE 24.1 Generated family tree in The Shrouded Isle.

TABLE 24.1 Great Houses, Cult Values and Associated Rituals

Great
House

Kegnni Iosefka Cadwell Efferson Blackborn

Cult Value Ignorance Fervour Discipline Penitence Obedience

Ritual Burn
Books

Build
Monument

Confiscate
Goods

Flagellate
Sinners

Investigate
Heresy

Generating Personalities in The Shrouded Isle ■ 305

added in the Sunken Sins expansion may replace an existing virtue or
vice. The generation algorithm avoids assigning the same trait to multi-
ple characters, usually resulting in a unique set of traits per character.
Thus, each generated character has a clear, essential and unique
strength and weakness that constantly affects the core gameplay.
Traits also have two levels of severity—minor and major—which

determine their impact. For example, “Imaginative” is a Minor Vice
that lowers Ignorance by 10 points, while “Morbid” is a Major Vice that
reduces Fervour by 30 points. Characters may be assigned any combi-
nation of major and minor traits, as long as they have a virtue and
a vice each. This can result in lopsided combinations such as a character
with a Minor Virtue + Major Vice. While this may be unbalanced at the
individual level, major traits are limited in number and therefore
balanced at the town level. Furthermore, the lop-sidedness makes the
character’s impact on the town more visible, accentuating personality in
the player’s mind. Beyond this, the player has means to reverse or
circumvent the impact of a character, which will be discussed later. This
simplistic approach guarantees that every generated character is morally
flawed but situationally useful to the player.
The final aspect of a generated character is aesthetic identity, which is

composed of their name and portrait. While neither of these has any
impact on gameplay, they are necessary to establish the characters’ indivi-
duality. In a game with a fixed number of characters per playthrough,
having any two characters share the same name or portrait breaks immer-
sion. Furthermore, players tend to extrapolate character behaviour from
simply how a character looks. During playtesting, we observed that players
would employ characters as advisors simply because they looked attractive
or choose them for sacrifice because they looked maniacal. Ideally, we
would have modified portraits or made certain portraits exclusive to
certain traits to incorporate this impulse with the core gameplay. Even as
is, the aesthetic identity of a given character is a visible anchor for the
player, allowing them to more easily extrapolate their personality.

INTERACTION
In this section, we will examine how the gameplay systems in The
Shrouded Isle allow the player to interact with the generated characters

306 ■ Procedural Storytelling in Game Design

in a way that makes their personalities memorable. The player’s osten-
sible goal is to survive five years while maintaining the five values of the
cult and maintaining control over the five Great Houses. Each of these
goals is complicated by the fact that every action in The Shrouded Isle
involves the townspeople as either proxy or target. This makes the
player utterly dependent on the characters and their behaviour, which
forms the bedrock of the gameplay.
Each playthrough of The Shrouded Isle is organized in terms of years,

seasons and months. Within a given season, there are three main
phases: Town, Work and Sacrifice. The Town phase serves as
a preparatory and investigative phase. The player has two main tasks:

1. To investigate the townspeople to reveal their traits

2. To appoint an advisor from each family to use in the subsequent
Work phase

The Work phase (Figure 24.2) is when the characters and their beha-
viours affect the town the most. Among the five advisors, the player
selects one to three each month to perform various rituals to improve

FIGURE 24.2 The Work Phase.

Generating Personalities in The Shrouded Isle ■ 307

the cult’s religious values. As the advisors perform the rituals, their
traits also affect the religious values, encouraging players to use advisors
with the most beneficial virtues and the least harmful vices.
The Sacrifice phase is the final phase of a season. The player selects one of

the five advisors to be killed in ritual sacrifice. Since the sacrifice is intended
as an example for the townspeople, the impact of a selected character is the
inverse of the Work phase - the worse their vice, the greater the benefit to
the town, but the better their virtue, the worse the loss.
Player actions in each phase revolve around the characters, their traits

and their families. Yet, in order for the characters to seem like indivi-
duals, and not merely resource gathering automata, there needed to be
risk in using them. Since characters’ impact on the town was completely
predictable, they felt overly mechanical. Thus, we added elements of
random chance and hidden information to humanize the characters
further.
In the final version of The Shrouded Isle, character traits can be in

one of three states of knowledge—unrevealed, partially revealed and
fully revealed (Figure 24.3). While the actual impact of a trait remains
the same regardless of player knowledge (i.e. a Scholar will lower

FIGURE 24.3 Unrevealed (left), Partially Revealed (centre) and Fully Revealed
(right) States.

308 ■ Procedural Storytelling in Game Design

Ignorance regardless of whether the player has knowledge of being
a Scholar), the way that the player engages with a character changes
based on how much has been revealed. By obscuring most traits, the
player has to make a leap of faith when selecting advisors, trusting that
a character will not be detrimental to the town as an advisor. This sets
up player expectations towards a character’s behaviour. For example,
players often assume that a character with an unrevealed vice is benign,
which is an irrational but understandable belief given limited knowl-
edge. When a character is eventually revealed to have a Major Vice, we
observe that players react with a sense of betrayal, as though the
character actively chose to sabotage the plans.
Random modifiers to Work phase rituals were added to create further

nuance, even when all the traits have been discovered. Though char-
acters generally perform their family ritual at the normal magnitude,
there is a 15% chance of triggering a Great or Poor Outcome, which
applies a 1.5x or 0.5x modifier respectively. The modifiers are not
significant enough to cause game-ending situations in earlier seasons.
However, in the late game, they can unexpectedly cause one of the
religious values to fall below the critical threshold, creating cascading
consequences that throw a wrench in the player’s survival plan. As for
the rate, the higher chance compared to more typical “Critical Hit” rates
causes characters to surpass or disappoint player expectations fre-
quently. These randomized outcomes (Table 24.2) caused players to
extrapolate character competence from the work results, overusing pet
advisors who were merely lucky, or punishing poor performers by
killing them in the Sacrifice phase.
A side effect of adding uncertainty to character behaviour was that

skilled players would be risk averse in their character selection. While
hidden information and random chance forced players in the initial
seasons in the game to interact with non-optimal characters, eventually
they would tend to exclusively use characters that they could fully vet.

TABLE 24.2 Work Phase Outcomes

Outcome Great Average Poor

Chance 15% 70% 15%

Multiplier 1.5x 1x 0.5x

Generating Personalities in The Shrouded Isle ■ 309

Thus, the game needed to provide compelling motivation and nuanced
circumstances that allowed each character to be situationally useful.
The family opinions system during the Work phase was added to

encourage players to use each character. Using an advisor from a given
family will improve the opinion toward the player, while not using the
advisor reduces it. Since the player can only use up to three advisors per
month, two to four families are inevitably scorned. In order to avoid
revolt, the player is compelled to use advisors from each family for at
least one of three months during a season, even if their contribution to
the cult’s values may be questionable or clearly detrimental. As a result,
characters the player might otherwise ignore are given chances to
display their personalities.
The Sacrifice phase (Figure 24.4) is a more explicit attempt to draw

attention to flawed characters. A mechanical inversion of the Work
phase, the selected person’s vice increases the cult’s values, while virtue
decreases them. Narrative wise, this represents the moral example the
sinner’s death sets for the townspeople—worse the vice, better the
example. With this dynamic in mind, players are motivated to select at
least one character with a Major Vice as a seasonal advisor for the sake
of having a convenient scapegoat.

FIGURE 24.4 The Sacrifice Phase.

310 ■ Procedural Storytelling in Game Design

Another aspect of the Sacrifice phase is the severe opinion penalties
applied on the dead character’s family. Understandably, families do not
take kindly to having their members killed, even for religious reasons.
While the penalty can be mitigated by thorough investigation of
a character’s traits using Inquiries, repeatedly targeting the same family
imposes a massive opinion penalty that risks revolt. The penalty adds
further nuance to the player’s choice in that sacrificing the ostensibly worst
sinner among the advisors is not necessarily the most politically astute
choice. Indeed, skilled players may sacrifice someone with a Minor Vice, or
in rare cases someone with a Major Virtue, in order to preserve stability.

TRAIT MODIFICATION
While the near immutability of a character’s traits was by design, we found
that players expected some dynamism in the generated personalities beyond
the aforementioned interactions. In the original release of the game, this
desire was addressed through random events, presented either as a letter or
visit by one of the townspeople, asking for the player’s advice or decision on
an important matter. The player choices usually were political or moralistic
in nature, primarily affecting family opinions and cult values. However,
some choices had personal outcomes, replacing a character’s existing trait
with another one. This approach allowed us to create character arcs focusing
on trauma and redemption, such as someone overcoming the sacrifice of
a loved one to become more resilient, or a sceptical scholar regaining her
faith in the cult. Some traits triggered a chain of events that took place over
multiple seasons. For example, an Artist may repeatedly ask for approval to
put on performances, each show being more deranged than the last. While
event chains allowed for more extensive character development, they were
also more fragile, because the player had to avoid killing any characters
involved to continue triggering the events. As a result, we relied more on
singular events for trait modification.
Despite these event-driven character arcs, players still felt characters

were too static. Once a character’s traits were fully revealed and their
associated events exhausted, only the stat values of the traits and the
family specialty mattered from a gameplay standpoint. Since players
would frequently reuse favourite characters with good trait pairings, the
final year of a given playthrough was repetitive.

Generating Personalities in The Shrouded Isle ■ 311

In the Sunken Sins expansion, contagions were added to retain trait
dynamism throughout the playthrough. The intent was to surprise the
player by having a character behave differently even if the player had
previously discovered everything about them. In the first autumn in
a playthrough, a random character was selected to be the carrier of
a “spiritual contagion” that replaced their virtue with a partially dis-
covered trait that reduced a cult value, much like a vice. In every season
afterwards, either the contagion spread to another character in the same
family or another contagion was spawned in a different family. Given
the potential penalties, contagions were useful in making the players pay
more attention to the characters throughout the playthrough. Similar to
how players blamed characters for Work phase failures, players blamed
characters affected by contagions for spreading them to otherwise useful
and virtuous members of their family.
To counterbalance the randomness of contagions, we added the Purifi-

cation Tower (Figure 24.5), which gave the player active means to modify
character traits. During the Town phase, the player can choose to confine

FIGURE 24.5 The Purification Tower screen, showing purification in progress
(left cell).

312 ■ Procedural Storytelling in Game Design

up to three characters in the tower and try to improve them through
submerging them in seawater. While there are no immediate costs to
purification, confined characters are unable to serve as advisors, and the
action takes a full season to complete. Furthermore, the success rate is
dependent on how much the player has inquired about contagion, having
a 100% rate if fully revealed. For afflicted characters, successful purifica-
tions would remove the contagious trait and restore the underlying virtue.
However, failure would result in the drowning of the character, which
would result in major opinion loss with the family. Given the opinion cost
and limited availability of inquiries, the player needed to consider whether
the benefit of curing someone immediately was worthwhile compared to
the risks of killing a virtuous person as well as angering their family.
Depending on the situation, the player may decide that they cannot afford
to wait until the next season to have enough inquiries, in order to curb the
spread of the contagion. On the other hand, the player could decide to
ignore an afflicted character for now, if their underlying virtue was
unimpressive anyway. Thus, active trait modification in the Purification
Tower created a tension similar to the Sacrifice phase, in that the player
must judge the moral worth of the townspeople.
A secondary purpose of the Purification Tower is that it can ran-

domly modify non-contagious traits, creating more opportunities for
characters to surprise the player. When an unafflicted character is
purified, there is a moderate chance that either their virtue or vice will
be replaced with one with a higher magnitude and a low chance that the
character will drown (Table 24.3). In essence, purified characters
become exaggerated versions of themselves, for better or worse. As
purifying the unafflicted is optional, players feel responsible for the
outcome, resulting in a greater sense of satisfaction or disappointment
in the compared to the similarly randomized Work phase.
For characters that already have a Major Virtue, purification triggers

a literal transformation. They are turned into the Awoken, unintelligible
mushroom-like mutants who are thought to be blessed by Chernobog.
The virtue is replaced with the Awoken trait (Table 24.4), which has no
statistical value, and the character’s portrait is also replaced. In order to
unlock the secret ending in the Sunken Sins expansion, the player must
transform all surviving townspeople into the Awoken by the end of the
playthrough.

Generating Personalities in The Shrouded Isle ■ 313

In gameplay terms, becoming Awoken makes characters nearly use-
less during the Work phase as they lack virtues. Furthermore, in the
Sacrifice phase, they cost the player an immense amount of cult values
when killed, as they are living symbols of the cult’s faith. Thus, the
Awoken are functionally similar to victory point cards in deck building
games like Dominion in that they are necessary for unlocking a secret
ending but can constrain the player’s options if collected too early.
In narrative terms, the transformation represents loss of personality

caused by forced conformity. Characters no longer behave as they used
to behave and are literally inhuman. Since only characters with a Major
Virtue can be turned into the Awoken, the player must decide whether
turning the most virtuous members of the community into gibbering
monstrosities is worth whatever new possibility the ending might
contain. In this context, the Purification Tower was a success in
encouraging players to consider the townspeople’s personalities and
providing motivation for acts of administrative evil.

ANALYSIS AND CONCLUSION
Unfortunately, players moved past the moral quandaries of the sacrifice
and purification quickly, embracing their inner tyrants. During playtest-
ing, we found that players no longer approached the Sacrifice phase

TABLE 24.3 Purification Outcomes for Characters Afflicted with Contagion

Contagion Reveal State Cure
Chance

Vice Worsening
Chance

Death
Chance

Fully Revealed 100% 0% 0%

Partially Revealed or
Unrevealed

40% 40% 20%

TABLE 24.4 Purification Outcomes for Unafflicted Characters

Virtue
Type

Virtue Improve-
ment Chance

Vice Worsening
Chance

Death
Chance

Awoken Transforma-
tion Chance

Major
Virtue

0% 0% 0% 100%

Minor
Virtue

40% 40% 20% 0%

314 ■ Procedural Storytelling in Game Design

with trepidation after one or two seasons. One failed attempt to
encourage self-reflection was allowing the player to not kill anybody
during the Sacrifice phase. However, playtesting showed that players
were underwhelmed with the option as it was rather anticlimactic
compared to making a sacrifice. Furthermore, balancing the “No Sacri-
fice” option was difficult for both thematic and economic reasons.
Defying Chernobog’s will should result in a heavy punishment for the
player, but representing the punishment as cult value loss or family
opinion loss seemed arbitrary and confusing, because they both repre-
sent worldly, if subjective, values. Even if the punishment were framed
in a believable way, the “No Sacrifice” option needed to be balanced
against economic outcomes for sacrifices, so that it was neither the
obvious, easy way out nor the useless, never worthwhile option. There-
fore, we removed the option so that the moral quandary focuses on who
should be killed rather than whether anyone should be killed at all.
Another shortcoming of personality generation in The Shrouded Isle

is that there are too many characters at the start of the playthrough. As
30 characters were present at the beginning, some players felt over-
whelmed by choice paralysis during the Town phase and had difficulty
emotionally connecting with the characters in the first few seasons. The
game could have started with fewer townspeople and added more as
time progressed, representing them as new arrivals to the village or
children coming of age. However, the new characters would have raised
questions that undermined the narrative, such as “Do other commu-
nities exist?” or “Why did I not know about these children earlier?”
While the questions were not insurmountable, they added unnecessary
complications. Furthermore, the demographic decline of the town gave
the game a distinct, desperate feel, compared to other simulators that
focus on growth and prosperity. If The Shrouded Isle had a non-
apocalyptic setting, we might have chosen a more gradual approach to
personality generation.
The Shrouded Isle’s character generation was successful in humanizing

the townspeople to the player while using aspects of their personality to
dynamically create difficult choices. To establish social context, each
character was assigned to one of five families that serve a specific role in
the village. Flawed but distinct personalities were created through giving
each character a unique pair of traits. Each character also had a clear

Generating Personalities in The Shrouded Isle ■ 315

aesthetic identity by being given unique name and portrait. Once the
game began, the gameplay systems maximized the opportunity for the
characters to depict their personalities by requiring the player to trust and
depend on the characters in order to rule the village. In the Work phase,
elements of random chance and hidden information created opportunities
for characters to act as independent agents, surpassing or betraying the
player’s expectations. In having family opinions be affected by advisor
usage, players were given further motivation to tolerate or engage with
deeply flawed characters that would otherwise be side lined for optimal
strategic play. Finally, the Sacrifice phase, through inversion of virtues and
vices and dramatic family opinion penalties, motivates the player to re-
examine each advisor, considering both the personal behaviour and the
political consequences of killing them. Through a combination of generat-
ing flawed characters and game mechanics that motivate players to engage
with them, The Shrouded Isle creates circumstances in which the player
must choose to become an “administrative monster” in order to survive.

316 ■ Procedural Storytelling in Game Design

CHAP T ER 25

Dialog

Elan Ruskin

“Healthkit here!”
“There’s a monster behind you, Fred!”

C haracters that seem to understand and remark on the state of the
world add a lot to a game, but as the amount of relevant gamestate

and available dialog grows, selecting one line out of thousands with an
immense if/else script becomes daunting.
I came to think about this problem when working on Left 4 Dead,

a cooperative shooter game that relies heavily on characters responding to
the environment and each other for its storytelling. The player-controlled
Left 4 Dead characters autonomously comment in response to tactical
situations (such as warning of zombie attacks and calling out useful
resources) but can also be directed to say context-specific things from
voice menus. Because any character in Left 4 Dead can die at any time, we
needed a system that could adapt to choosing the best available conversa-
tion from whomever is alive. Furthermore, because there is an AI director
randomizing circumstances, a building that might contain an ambush in
one playthrough could be innocent in another, and so location-based
speech triggers would be inadequate for “Hey! An ambush!” and the like.
In this chapter, I’ll describe one approach to dialog that evolved in

response to those requirements then proved to be a very powerful and
simple framework for any project in which characters need to be aware
of world state, remember history, cascade from special to general cases,
and select the best available dialog/script/animation in context. By
keeping things straightforward, it also provides writers a data-driven

317

way to make special cases, running gags, back-and-forth conversations,
and anything else that depends on persistent character memory.

USE CASES
In this context, “dynamic” dialog simply means character speech that
responds to players’ actions based on the state of the world around
them and previous events. This has been a part of games since early
parser-based text adventures such as Deadline and Witness, which had
NPCs that could carry on simple conversations and remember players’
previous actions, but as games grew more complex the quantity of state
and dialog to manage grew as well.
Many roleplaying games support back-and-forth conversation with

players via conversation trees. This familiar idiom provides a clear
cause-and-effect relationship between player choices and character
dialog. The most common implementation is essentially a state machine
with player input driving the character from one state to another, which
is simple to author:

STATE_GREETING: say “Have you seen the village clocktower?”
if PLAYER_RESPONSE == “yes” : goto STATE_SEEN_TOWER
if PLAYER_RESPONSE == “no” : goto STATE_DECLINED_TOWER
STATE_SEEN_TOWER: say “Nicest one in the whole county,
isn’t it.”

End
STATE_DECLINED_TOWER: say “Here, I’ll show you the way.”

End

and so on. But this rapidly becomes unwieldy when characters must
remember players’ prior actions and other events in the game—the
larger the game, the more burnt villages and slain dragons there are
for characters to keep track of:

STATE_GREETING: say “Have you seen the village clocktower?”
if PLAYER_RESPONSE == “yes” and VILLAGE_DESTROYED == false
: goto STATE_SEEN_TOWER
if PLAYER_RESPONSE == “no” and VILLAGE_DESTROYED == false :

goto STATE_DECLINED_TOWER
if PLAYER_RESPONSE == “yes” and VILLAGE_DESTROYED == true :

goto STATE_SEEN_TOWER_DESTROYED

318 ■ Procedural Storytelling in Game Design

if PLAYER_RESPONSE == “no” and VILLAGE_DESTROYED == false :
goto STATE_DECLINED_TOWER_DESTROYED

STATE_SEEN_TOWER_DESTROYED: say “Glad you were able to see it
before it burned down.”

End
STATE_DECLINED_BURNING_TOWER: say “That’s a shame, it was

the nicest one in the county.”
End

which is hard to keep up for thousands of possible bits of state.
Another common type of responsive dialog is event-driven barks. For

example, NPCs in most stealth games will say things like “What’s that
I saw over there?” or “Did I just hear a noise?” or “That light went out!”
and so forth to convey the AI’s state to the player. Shooters’ teammate
NPCs yell warnings like “Incoming, right flank!”; sports games often
have extensive play-by-play commentary. Some titles further this into
an artistic device, such as Bastion’s narrator commenting on everything
the player does. This sort of dialog can also be implemented via a tree
of if-else statements but becomes unwieldy as the possible combinations
of events and conditions multiply.
All these cases share a need to track state about the world in

a uniformly manageable way, use that state to select just the right line
from a big database of character speech, and remember what was said
before when selecting the next line. Here I’ll present one possible system
for handling this in a simple yet powerful way, by thinking of dialog as
a system of general rules with increasingly specific exceptions.
The easiest way to understand the system presented here is to build it

up one step at a time from the use cases that motivate it. For the sake of
example, let’s say we’re working on a team-based competitive shooter
game. We want characters to vocalize

• in response to specific events, such as being shot at,

• when the player hits a key for a specific vocalization, such as
calling for a medic, or

• when the player hits the general “vocalize” key, in which case
something context-specific should play depending on what the
player is looking at, such as “step on that capture point!”

Dialog ■ 319

CONTEXT-SENSITIVE VOCALIZATION
Our first implementation will be a simple list of possible character
responses, with rules determining which one plays when, for example,
the player hits the “vocalize” button. Every rule is associated with some
response—both the audible line and the animation that goes with it—
that I’ll henceforth treat as a single unit. In principle, the script would
look something like this:

rule Voc_Grenadier_CallForMedic
{

criteria
{ Event=OnVocalizeKey ; LookingAt=Medic ;
SpeakingCharacter=Grenadier }

Response
{ Grenadier_Medic_Call // “hey doc, come help me” }

}
rule Voc_Grenadier_Announce_Capture_Point
{

criteria
{ Event=OnVocalizeKey ; LookingAt=CapturePoint ;
SpeakingCharacter= Grenadier }

Response
{ Grenadier_Do_Capture_Point // “someone stand on that

capture point!” }
}

The Vocalize() function then walks through each of the rules in turn,
finding the one that matches the speaking character, the trigger event
(in this case the player hitting a key), and the object under the player’s
cursor. We can use the same approach for game-triggered events such
as a character hitting full charge on their special attack:

rule Bark_Laserguy_Announce_Megacharge
{

criteria
{ Event=OnFullyCharged ; SpeakingCharacter=Laserguy }

Response
{ Laserguy_Report_Charge // “My laser is fully
operational!” }

}

320 ■ Procedural Storytelling in Game Design

And so on. This is a convenient way to create lines that are context-
sensitive variations on the same basic idea. The character controller
only needs to emit a generic “OnVocalizeKey” event, and then the rules
database can select the most appropriate line based on context.
If we add a new kind of object to the game, we need only add a new

response rule with the relevant LookingAt for the character to address.
Making rules more specific is easy as well; a character can, for example,
distinguish between specific capture points Alpha and Bravo by adding
a criterion to the relevant rules:

rule Voc_Laserguy_Announce_Capture_Point_Alpha
{
criteria

{ Event=OnVocalizeKey ; LookingAt=CapturePoint ; Cap-
PointId=A ; SpeakingCharacter=Laserguy }
Response
{ Laserguy_Do_Capture_Point_Alpha // “stand on point A!” }

}
rule Voc_Laserguy_Announce_Capture_Point_Bravo
{
criteria

{ Event=OnVocalizeKey ; LookingAt=CapturePoint ; CapPoin-
tId=B ; SpeakingCharacter=Laserguy }
Response
{ Laserguy_Do_Capture_Point_Bravo // “stand on point

B!” }
}

If we keep the basic LookingAt=CapturePoint rule as well, we then
have a scenario where two rules match when the player triggers the
vocalization: both the generic one with criteria {Event=OnVocalize-
Key; LookingAt=CapturePoint;} and the more specific one with the
additional CapPointId=A criterion. In this case we choose the rule
that has more criteria: the one that is more specific. This means we
always have the general line to fall back to if a specific one can’t be
found. If a new map includes a capture point G, the general “Stand
on that capture point!” line will play if we haven’t recorded a specific
response.

Dialog ■ 321

AUTOMATIC TRIGGERS
Let’s extend this idea to support characters automatically commenting
on objects in their field of vision—useful for wisecracking NPC side-
kicks. We can get there with three more bits of machinery: a way to tag
objects in the world with specific names; a way for rules to set flags on
themselves; and a timer that dispatches onSee events to each character
at regular intervals, with an additional context for whatever object is in
the character’s field of vision.
The simplest approach to tagging objects is to put a string field on

each actor, so that, for example, cats would have a “cat” tag, barrels
a “barrel” tag, and so on. In a component-driven engine such as Unity,
this could be as simple as creating a Vocalization Target component
that has a simple string field on it. (For more on the power of tags to
organize your content, see Chapter 22.)
Then we can write rules for specific objects, so when the char-

acter receives an “onSee” event and it happens to be facing a cat, it
will choose the relevant rule. Because we have that timer triggering
this event automatically every few seconds, it will create the illusion
that the character is spontaneously noticing things around it
(Figure 25.1).
Conversely, if no rule matches for the currently looked-at object (a

chair, let’s say), the character will remain silent.

FIGURE 25.1

322 ■ Procedural Storytelling in Game Design

The next piece is for rules to have a way of setting a “said once” flag
on themselves, so that the character doesn’t repeatedly make the same
comment. This is easily achieved by adding a callback that runs when
the line of dialog has finished playing. Something like:

rule Fred_LookingAt_Cat
{
criteria

{ Event=onSee ; LookingAt=cat ; SpeakingCharacter=Fred ;
this.SaidOnce=false }
response
{ Fred_Comment_Cat // “A cat! The Internet must be

nearby.” }
callback
{ this.saidOnce := true }
}

That’s all we needed to adapt our prior system to make characters
utter some context-specific remark whenever they walk past something
interesting.

MEMORY
Next, we want characters to remember which things have been said
previously, so that we can implement things like running gags. We can
get there with rules that write, increment, or modify arbitrary bits of
context into an associative array on the character. So, a simple running
gag could be implemented like:

rule Fred_LookingAt_Barrel_0
{
criteria

{ Event=onSee ; LookingAt=Barrel ; SpeakingCharac-
ter=Fred; speaker.BarrelsSeen=0 }
response
{ Fred_Comment_Barrel0 // “I wonder what’s in this

barrel.” }
callback
{ speaker.BarrelsSeen += 1 }
}
rule Fred_LookingAt_Barrel_1
{

Dialog ■ 323

criteria
{ Event=onSee ; LookingAt=Barrel ; SpeakingCharac-
ter=Fred; speaker.BarrelsSeen=1 }
response
{ Fred_Comment_Barrel1 // “I heard these barrels store

vast quantities of marinara sauce.” }
callback
{ speaker.BarrelsSeen += 1 }
}
rule Fred_LookingAt_Barrel_2
{
criteria

{ Event=onSee ; LookingAt=Barrel ; SpeakingCharac-
ter=Fred; speaker.BarrelsSeen=2 }
response
{ Fred_Comment_Barrel2 // “All this sauce and no pasta in

sight.” }
callback
{ speaker.BarrelsSeen += 1 }
}

We can also expand the notion of context to include the state of the
world beyond the characters’ own memories. If the world has an
associative array of state like the characters do, then rules can test that
information in their criteria like any other bit of context. For example,
a character may have different lines about their village square depending
on whether the dragon has visited:

rule Jane_LookingAt_Square_NoDragon
{
criteria
{ Event=onSee ; LookingAt=VillageSquare ; global.Dragon-
Freed=false ; SpeakingCharacter=Jane }
response
{ Jane_LookingAt_Square_NoDragon_1, // “It looks like the
farmer’s market is open.”}
}
rule Jane_LookingAt_Square_WithDragon
{
criteria
{ Event=onSee ; LookingAt=VillageSquare ; global.Dragon-
Freed=true ; SpeakingCharacter=Jane }

324 ■ Procedural Storytelling in Game Design

response
{Jane_LookingAt_Square_WithDragon_1, // “Gosh, that’s
much more fire than usual.”}
}

REPARTEE
How about characters having back-and-forth conversations with each
other? The most straightforward way is to treat each line of dialog as
a separate rule and event. When one character has finished speaking, it
sends an event to the other character, along with a bit of context
indicating which dialog has just finished playing.

rule Fred_LookingAt_Barrel_1
{
criteria

{ Event=onSee ; LookingAt=Barrel ; SpeakingCharac-
ter=Fred; speaker.BarrelsSeen=1 }
response
{ Fred_Comment_Barrel1 // “I heard these barrels store

vast quantities of marinara sauce.” }
callback
{
speaker.BarrelsSeen += 1 ;
SendFollowupEvent(target:Jane, event:onReply, Pre-
viousLine: Fred_Comment_Barrel1);
}
}
rule Jane_ReplyTo_Fred_Barrel1
{
criteria

{ Event=onReply ; SpeakingCharacter=Jane; PreviousLine=-
Fred_Comment_Barrel1 }
response
{ Jane_ReplyTo_Fred_Barrel1 // “Oh no, I’m allergic to

tomatoes!” }
callback
{
SendFollowupEvent(target:Fred, event:onReply, Pre-
viousLine: Jane_ReplyTo_Fred_Barrel1);
}
}

Dialog ■ 325

In the example above, SendFollowupEvent() takes two main para-
meters, along with an optional number of additional parameters that
become context to the next query. The key pieces are the event name
and a notion of to whom to send the event. In this case, the event goes
directly to Jane, who then tests her rule to find one with a PreviousLine
criterion matching “Fred_Comment_Barrel1”.
If we have multiple characters, we can also develop a notion of

broadcasting onReply to everyone nearby—instead of target:Jane, it
would be target:Anyone. All nearby characters would search their
databases for some follow-up remark to Fred_Comment_Barrel1. The
one with the most specific response (i.e., the rule with the most
criteria) wins. This is useful for situations where you can’t predict
which characters will be present in every scene or for improving
variety so that either Jane or Pierre or Kim might reply to Fred in
any given playthrough.
We can string together conversations simply by adding rules to the

database—to provide Fred with a reply to Jane’s reply, he just needs an
onReply rule with a PreviousLine=Jane_ReplyTo_Fred_Barrel1 criter-
ion. We could also use target:Self to cut up a long monologue into
shorter pieces.

COMPLEX RESPONSES
To increase variety, we can turn the Response field into a list of lines
and select one at random every time the rule matches:

rule Fred_LookingAt_Bottle
{
criteria
{ Event=onSee ; LookingAt=bottle ; SpeakingCharac-
ter=Fred ; this.SaidOnce=false }
response
{
Fred_Comment_Bottle1, // “This place is full of litter.”
Fred_Comment_Bottle2, // “Hey, a refreshing beverage!”
}
callback
{ this.saidOnce := true }
}

326 ■ Procedural Storytelling in Game Design

The response field could also include replay policies to determine
whether each line is said only once or whether selection is round robin
until all lines have been said, at which point it starts over again, or so
on. Round-robin behavior is useful for events that are encountered
repeatedly, such as a stealth AI’s barks: you could have five lines for
the OnSawPlayer event, but as the event will surely come up more than
five times in the game, you want to recycle those lines once they’ve all
been used.

DATA-DRIVEN CONTEXT
Using an associative array to store context allows callbacks to specify
any key for writeback, even creating entirely new bits of context
without needing any programmer support. This means that every bit
of conversation can store an arbitrary piece of memory, which pro-
vides you with a lot of flexibility to define entirely new conversations
and running gags.
For example, a writer could create a running gag in which every

character comments about seeing cats but has a different response
depending on how many other people have said something already. If
the writer can invent and increment a global CatsSeen counter simply
by mentioning it in a rule callback, this sort of interaction can be built
entirely in data without needing programming support. (For more on
tools design, see Chapter 28.)

USABILITY
The primary goal here is a flexible, usable, understandable, and data-
driven tool for scripting arbitrarily complex dialog. One advantage of
a rule-based system such as this one is that it collects all the possible
states that could be used to select a line of dialog into a single pile of
facts. From the programmer’s point of view, the information necessary
to decide which line gets played may be strewn across many objects
hither and yon, for example, a code-driven approach to playing a line
when a character is in a specific town and has killed more than 7 trolls
and a key character is alive and the player has equipped a magic sword
with at least four charges left on it and there are no dragons nearby
might look something like:

Dialog ■ 327

if (
(globals->GetCurMap()->name == “Town1”) &&
(globals->GetKilled(kENEMY_TROLL) > 7) &&
(savedstate->GetCharacter->Get(“Sheriff”)->m_isAlive
) &&
(!savedstate->GetPlace(“Town1”)->m_isOnFire) &&
(player->GetInventory()->Get(“MagicSword”) != NULL
) &&
(player->GetInventory()->Get(“MagicSword”)->m_Charges
>= 4) &&
(world->FindEntitiesNear(player->GetLoc(),
kTYPE_DRAGON).count() == 0)
) { … }

There are several things painful about this.
First, the context available for dialog is poorly discoverable. If you didn’t

know there was an m_IsOnFire field on place objects, you wouldn’t know
that you could write dialog specific to local urban flammability. Second, it’s
not obvious how you get information from all these sources: there may be
a complex chain of members and functions between wherever you’re
triggering the dialog and the information you need to select it. Third, the
information may be strewn across many different classes with different
programmers responsible for them; on a large project, it’s impossible to
keep track of all the state that’s being managed by other people. Fourth, giant
conditional blocks are confusing, messy, and easy to screw up, especially
when you later add new conditions. Most importantly, this leaves the writer
completely dependent on programmer support to add any dialog to the
game—this data is only discoverable by reading through the source code and
headers, so either writers must also be programmers, or programmers need
to exhaustively document every bit of available context (and of course any
such document will rapidly go out of date). In our implementation, it’s more
useful to think of the world as a merged pile of facts. We can imagine each
query as containing every bit of available information in a dictionary
(divided into namespaces if you like), conceptually like:

{
CurrentMap : “Town1”,
EnemiesKilled_ : { kENEMY_TROLL : 9, kENEMY_SOLICITOR :

2, etc },

328 ■ Procedural Storytelling in Game Design

PlayerInventory : { MagicSword : { NumCharges : 5 },
MagicPants : {} },
World : { Town1 : { OnFire : false, TaxDay : true } },
NearbyEnemyCount : 0,
// and so on
}

This makes it easy for the rule-matching algorithm to find any field it
wants to filter; it’s a simple key lookup. It also means you can use any
bit of context in any rule. If you want a character’s comment upon the
town clock tower to change depending on what happened in a nearby
village, that information is already available to you in that context
dictionary. If you want to alter a character’s barks based on how much
danger they perceive themselves to be in, you could pass in the global
count of active enemy characters. It creates opportunities for serendip-
ity: you may have added a “TotalFruitPurchased” context for use by the
fruit-vendor in village A, but if it’s available globally, it may come in
handy if you’re struck with sudden inspiration for a character in town
B to comment on their cousin’s burgeoning fruit empire.
Also, combining all the contexts into one place makes them self-

documenting to an extent. If you build a diagnostic printing all the
context attached to every query into the dialog system, in addition to
a useful debugging feature you’ll also have a convenient list of contexts
that is always complete and up to date. On Left 4 Dead, this diagnostic
served as the writers’ primary index.
In practice, merging every piece of state in the universe into a flat

dictionary for every lookup is very computationally expensive. Next,
we’ll consider some data structures and simple optimizations that can
keep this manageable.

DATA STRUCTURES AND THEIR IMPLEMENTATION
To review the key data structures in the approach mentioned earlier:

• A context is a single key-value pair such as PlayerHealth:72 or
CurrentMap:Village5. For performance reasons it’s best to use
numeric values as much as possible, so for string values such as
names, consider internally replacing them with unique symbols or
hashes.

Dialog ■ 329

• A query is a group of contexts accumulated together into a single
flat vector (or associative array). When a function wants to query
the system, it assembles contexts from several places:

• The function itself—for example, your UseMagicItem()
function might supply MagicItem:wand and ChargesLeft:8,
which are both specific to that piece of code. You will
probably always have some top-level event context that
identifies the general category of line to be played, such as
CastSpell, SeenEnemy, Injured, and so on.

• The speaking character’s state, such as its current health,
what object it is looking at, and other information that varies
moment to moment.

• The character’s memory, including all the writebacks from
previous rules. For example, a count of how many times the
player healed this character, or how many times they’ve
commented upon the weather in some running gag.

• Global state, such as which map is loaded, the disposition of
other characters, any pertinent ongoing effects.

• A criterion is a single comparison on a context’s value, such as
PlayerHealth > 50 or NearestObject=Barrel.

• A rule is a list of criteria; if all of them are true, the rule matches.
Several rules may match at once, in which case you choose the
most specific (the one with the most criteria). Each rule should at
least have a criterion for that top-level event function, both for
organizational purposes and for an optimization mentioned
below.

• A response is the outcome when a rule matches, including

• the line (or animation or whatever) to play,

• writebacks to the character’s memory or the world’s state, or

• follow-up events to dispatch to other characters for them to
respond.

330 ■ Procedural Storytelling in Game Design

Building a Query

+

+

+

Function parameters (e.g.)
Character.FindDialog(Event=OnHit, Attacker=“Knight”,

Damage=12.4, …)

Event “OnHit”

Attacker “Knight”

Damage 12.4

Character state

Name “Odo”

Hitpoints 78

Nearest_Ally “Wital”

Current_Weapon “Mace”

Character memory

Weather_Remarks 4

Saxons_Bludgeoned 7

Global

Current_Map “Hastings”

Remaining_Dragons 0

Quest5_Complete false

Dialog ■ 331

With these data structures in place, choosing a line of dialog is
essentially the following:

1. Construct a query (an associative array of contexts) by merging
together function-specific context, character state, character
memory, global context, and whatever else.

2. For each rule in the database,

a. Test each criterion. If any criterion fails, skip this rule.

b. If all criteria match, add this rule to the list of matching rules.

3. Select the highest-scoring rule (e.g., the one with the most criteria)

The naïve algorithm—looping over every criterion in every rule—
runs in quadratic time but a few optimizations can make it much better.
First, sort the criteria in each rule, and the contexts in each query, by

their keys. This lets you replace the random access step of each criterion
looking up the corresponding fact in the query. With sorted keys, you
can march pointers through the query vector and the rule’s criterion
vector in parallel, rejecting early as soon as any criterion fails to match.
The rules’ criteria can be sorted by an offline build step.
Second, merging multiple data sources (function call, character state,

world state) into a single query vector doesn’t need to be done literally.
You can maintain each of those sources of context as a separate vector
and have the rule’s criteria test against all of them. If you’re sorting your
contexts as mentioned above, you can maintain separate index pointers
into each array of contexts and move them all in parallel (Figure 25.2).
Third, you can hierarchically partition your rules database by high-level

criteria, essentially a nested table of tables. For example, if every rule in
your system has a SpeakingCharacter criterion, you can store a table from
every possible speaker name to only the rules pertaining to that speaker,
and so narrow down the number of rules to test considerably. By applying
this recursively to other criteria (such as event and so on) you can reduce
the number of rules that really need to be tested by quite a lot. (Theore-
tically, you could take this to its logical conclusion and represent the

332 ■ Procedural Storytelling in Game Design

whole database as an interval tree with one dimension for each possible
criterion, but this is much more complicated than it is worth.)
Fourth, if your game is divided up into regions or levels, and some rules

are pertinent only in certain levels, you can store those rules inside those
levels like any other asset, adding them to the database when the level is
loaded and evicting them afterwards. This once again reduces the number
of rules that need to be tested, as well as the memory footprint.
Fifth, sort the rules in each subdivision of the database by the number

of criteria they have, in descending order. Once a high-scoring rule has
been found, there is no need to test any rules that could only produce
a lower score.

AUTHORING TOOLS
When it comes to writing the tool that lets writers get dialog into the
game, there are many options, and the most important thing is to
choose one that’s suited to your team and circumstances. One possibi-
lity is to simply script rules directly using a syntax similar to the
examples above. This is straightforward but grows unwieldy when
you’ve got more than a few hundred rules to manage.
Another is to use a spreadsheet, exporting from that into game-

readable asset. The advantage of this approach is that spreadsheets are

FIGURE 25.2

Dialog ■ 333

familiar tools; you can use the spreadsheet’s sorting tools to see all the
lines for a given character at a glance, and it’s quick to add additional
bits of dialog simply by adding new rows to the spreadsheet. The
downside is that you will need a separate column in the spreadsheet
for each possible criterion, which becomes unwieldy when you have
many special-purpose criteria for running gags and the like. Specifying
context writebacks (RunningGag+=1) is also cumbersome.
Another possibility is to store the rules in some sort of relational

database and write a front end that lets you author, search, and manage
it. Campo Santo games did this to great effect for Firewatch,1 with
a unified database that managed not only dialog rules, but also tracked
localization info, voice-over recording status, and content files. The
downside here of course is that you must write such a tool. As with
the spreadsheet there’s also the question of how you store the criterion
array—either you use one column in the database for every possible
criterion, with the same shortcomings as the spreadsheet, or you have
a TEXT field that contains all the criteria like “{Event=onSee; Lookin-
gAt=VillageSquare; global.DragonFreed=false; SpeakingCharacter=-
Jane}” in which case searching is more cumbersome.
Another interesting approach is to look at rules as increasingly

specific exceptions to earlier rules and use a scripting language built
around the idea. For example, the Inform 7 text-adventure authoring
language has a natural language syntax for this:

The cat behavior rules is a rulebook producing an object.
A cat behavior rule when the cat can touch the catnip:
say “The cat frolics with the catnip until nothing remains
of it.”;
rule succeeds with result catnip.
A cat behavior rule when the cat can touch the cream:
say “The cat laps up the cream.”;
rule succeeds with result cream.
A cat behavior rule when the cat can touch the ball of wool:
say “The cat makes the ball of wool into a useless tangle.”;
rule succeeds with result ball.

That particular syntax would be unwieldy for rulebooks of any
considerable size, but the general idea may be adapted into something
more manageable.

334 ■ Procedural Storytelling in Game Design

Finally, spare a thought or three for debugging features. You can save
many hours of frustration with techniques like (for example)
a visualization that prints out a query as it’s sent into the system,
along with the origin of all its contexts, all the rules it tests, and which
ones pass or fail.

CONCLUSION
In summary, the key takeaways are:

1. Keep it simple. This whole apparatus is just a rule-matching engine
(or a production system in computer science parlance). Every feature
presented here was an incremental step on a basic idea.

2. Queries are simply lists of facts, treated as a key-value dictionary.

3. Every query into the system includes as many facts about the
world as possible. Throwing all that state at the database for every
query enables writers to add new rules for new specific circum-
stances without requiring programmers to go and add additional
data to the query.

4. Responses have a way to trigger follow-up queries on other
characters, for back-and-forth conversations.

5. Responses have a way to write back state, into either characters’ or
the global memory.

6. Context names are arbitrary—code will define some, but writers
should be able to invent new ones just by writing to an unused
name from a response callback.

7. Rules are additive—you can start with a few general-case
“OnBark” lines that have no special criteria and then add increas-
ingly specific ones.

8. Because rules are additive, you can add new characters, scenarios,
quests, etc., to the game just by loading additional rules into the
database.

But most of all: keep it simple.

Dialog ■ 335

NOTE

1 William Armstrong and Patrick Ewing (2017, March). “Do you copy?
The dialog system in Firewatch.” Game Developers’ Conference, San
Francisco, CA.

336 ■ Procedural Storytelling in Game Design

5
Resources

I f interactive storytelling is almost as old as language itself, we should
expect to find it everywhere. In previous chapters, we’ve seen examples in

interactive dramatic works and roleplaying games. Here we’ll share some
wider perspectives on interactive and procedural storytelling.
Specifically, we’ll consider esoteric tarot divination from the view of

procedural storytellers, as well as the ways that automated bots on Twitter
can be seen through our lens in their astounding variety. Finally, we will
close with a practical guide on creating tools for procedural storytelling, for
those readers inspired enough to get started immediately.
It’s important to choose the right tool for the job, as they say, and

this profession is no different, even if you sometimes build the tool
yourself. Thanks for reading, and happy generating!

337

This page intentionally left blank

CHAP T ER 26

Tarot as Procedural
Storytelling

Cat Manning

I t’s easy to think of procedural generation as a process that occurs
digitally, mediated by an algorithm that displays the results on

a screen, and this book is filled with examples of methods to create
dynamic, rich procedurally generated digital content. I find that one of
the richest tools for procedural storytelling is not digital at all but
analogue and has existed in one form or another for centuries. That
method is the tarot.
In the contemporary English-speaking world, tarot reading may be

the best known of all cartomantic methods of divination. The reader
uses a 78-card deck, comprised of a 22-card Major Arcana and a 56-
card Minor Arcana, to draw anywhere from 1 to 10 cards in a spread to
answer a particular question posed by a querent (Figure 26.1). Each
card in the deck has several associated meanings, and the reader
determines which are most relevant to the querent and the rest of the
spread by associational construction. Tarot, then, is a procedural algo-
rithm: cards are drawn and placed into position according to the system
the reader has chosen. The results are then read as a whole, both
meanings of individual cards and the interplay of patterns coalescing
to form the final impression of the reading. What emerges is an
interpretation: possibly a nebulous one and possibly quite solid. The
outcome can depend on a number of factors: how familiar the reader is
with tarot in general and the particular deck specifically, the pre-existing

339

relationship, if any, between the reader and the querent, and the
phrasing of the question being posed.
Regardless of one’s belief in the divinatory power of tarot, it’s both

a quick method for building intimacy and a powerful procedural
generator, for the same reasons. There exists no objectively correct
reading of a particular tarot spread; it’s left to the querent and the
reader to decide when and how they’re satisfied with the reading. Tarot
readers can perform another spread for clarity or draw an additional
clarifying card if results seem ambiguous or unsatisfactory to the
querent. The number of cards suggests an enormously boggling range
of possibilities: there are 4.675 × 10^21 possible 10-card Celtic Cross
spreads. Yet, tarot manages to avoid the oatmeal problem that Kate
Compton writes about in Chapter 1.
This is due to several aspects, some of which can be duplicated in

digital procedural generation, and some that would prove more
difficult or outright impossible. Meaning in tarot reading is con-
structed through a complex and layered associational structure of
intersecting meanings and through the reader’s associations with that
structure. A traditional tarot deck contains several overlapping taxo-
nomies; the deck is divided between Major and Minor Arcana, and

FIGURE 26.1 Selections of some Major Arcana cards from the Rider-Waite-
Smith deck.

340 ■ Procedural Storytelling in Game Design

the latter is subdivided into suits. Within those suits, numbered cards
and court cards are separate.
Even within these overarching taxonomies, there are some small but

narratively salient variations: the suit of Pentacles is represented in
some decks as Coins or Disks, and Wands is occasionally Staves or
Clubs. The court cards often see the most variation: Page / Knight /
Queen / King are traditional, but Prince / Princess / Queen / King also
occur, ostensibly to add more of a binary gender balance. There are
court variants like Son / Daughter / Mother / Father in the Wild
Unknown deck and the Amazon / Siren / Witch / Hag in the Dark
Goddess deck.
The expressive range of the individual deck adds another layer of

meaning: certain decks lend themselves more to particular shades of
a card’s interpretation.1 Some decks have variant suits: the Slow Holler
deck has Branches, Stones, Knives, and Vessels; the PoMo tarot has
Bottles, Bills, TVs, and Guns. Others have extra suits, as in the Fifth
Dimension’s addition of “ether” to supplement the four traditional
elements or the Silicon Dawn’s partial Void suit. Aleister Crowley’s
Thoth deck adds an additional Major Arcana card of the Aeon, to
represent a new age of humanity. Words and imagery of the cards
themselves can lend readers toward or away from potential interpreta-
tions: Crowley’s Thoth tarot, and decks based on it, have evocative one-
word prompts printed at the bottom of their Minor Arcana, priming
readers and querents to see a specific angle to the problem, where other
decks leave associational meaning nonverbal (Figure 26.2).
The deck’s expressive range, while directed by the creators, is also

subject to the reader’s response to that expressive range. Though the
Rider-Waite-Smith deck is the most well-known deck, hundreds of
variants exist, and readers chooses the deck or decks they feel are most
suited to the situation at hand. A deck that has no or few human figures
may feel to one reader as though it’s ill-suited to questions of romance
and intimacy; another reader may welcome that lack of leading imagery.
Each reader brings their own pre-existing associations with imagery and
cards, and each reader has their own taxonomy based on skill, prior
knowledge, and individual practice. A tarot reader who does not know
the difference between the Page and the Knight of a suit, for instance,
can still decide on an interpretation of each card and devise their own

Tarot as Procedural Storytelling ■ 341

FIGURE 26.2 From left to right: Marseille, Thoth, Rider-Waite-Smith, Golden
Thread interpretations of the Four of Wands.

342 ■ Procedural Storytelling in Game Design

pattern that will drive interpretive methods. Because tarot allows for so
much interpretive agency on the part of the reader, it engages the
attention of both the person asking the question and the reader of the
cards.
To illustrate in detail how tarot succeeds at creating this framework

of nearly infinite possibilities, all of which feel salient, unique and
personal, I’m going to do several sample readings using my own
associational structures and then examine my methods from
a narrative design perspective. Other tarot readers may have different
associations than the ones I bring to these readings, which indicates the
different construction of meanings this method of storytelling offers. In
order to talk about the wide variations the tarot provides, I’ll first
choose not only the number of cards to draw, but the spread and thus
the narrative range of possibilities. In tarot, a spread is a particular
number and geometric arrangement of cards, which assigns particular
meanings such as “hopes and fears” or “advice” to cards depending on
their position. A one-card spread is the easiest and bluntest of instru-
ments, best used for focus and brief flashes of insight. I drew “Justice”
about how an upcoming project meeting will go, which could suggest
the need for fairness, clarity, and openness in that conversation, but
could also serve as a potential warning that I’ll only get back as much as
I put in.
Three card spreads provide slightly more context. A past-present-

future spread offers a perspective on what is happening: what has
occurred in the past to bring the querent to the current position, what
the situation is in the present moment, and what to expect. A situation-
outcome-action spread offers slightly more agency to the querent, by
offering an action that would change the current situation and an
outcome if that action is taken; there is no sense that the action must
be taken, only of a path that leads forward from the middle card. Both
offer a linear narrative progression for the reader to construct. 10-card
spreads offer less linear forward momentum than three 3-card spreads,
but the former provides a contextual overview of a situation.
The usual past-present-future is crossed here (Figure 26.3) with

a “situation” card, which indicates a complicating factor or a new piece
of information. The subconscious and hopes and fears may seem
similar, but “subconscious” relates more to the querent’s general present

Tarot as Procedural Storytelling ■ 343

state of mind, while “hopes and fears” projects that present subcon-
scious onto the future and thus ties back to the central part of the
cross.2 10-card spreads are best for complex problems with a variety of
factors influencing the querent; they can, however, bog down a novice
reader or querent with too much information, particularly if there aren’t

Desire

Situation

Past Present Future

Subconscious

Advice

Community

Hopes & Fears

Outcome

FIGURE 26.3 Some readers invert the order of the long “cross” to the side, and
some use slightly different card labels to describe the interplay between internal
and external states of the querent.

344 ■ Procedural Storytelling in Game Design

multiple clear associations in the spread. By introducing a number of
additional cards that aren’t chronological, the Celtic Cross spread allows
for more “hooks” for both querent and reader to draw connections and
for a more salient and personal picture to arise. The complexity of the
reading increases as more cards are introduced, but because of associa-
tional structures within the tarot deck and within the spread, more
pathways for emergent meaning are possible. Those pathways won’t
always be relevant to other interpretations, and some will contradict,
but it’s up to the reader and querent to decide which structures to bring
to the surface as they piece together possible associations.
Here, we’ll start with a fairly simple three 3-card spread (Figure

26.4) and a situation-action-outcome reading within that. We’ll use
a hypothetical common question: “should I look for a safe and stable
job or pursue a riskier but more creatively and emotionally fulfilling
path?” By surfacing a specific, concrete question, we have already
significantly constrained our narrative possibility space and made it
easier for a reader to focus on constructing a narrative that can be
focused to provide greater personal meaning to the querent. But even
within that narrower possibility space, already we run into narrative
variants: our querent might be in a situation in which a practical job
is necessary to pay rent, loans, or medical bills; she also may have

FIGURE 26.4 A spread of three tarot cards.

Tarot as Procedural Storytelling ■ 345

resources and connections that allow more of a safety net. The reader
may not always be aware of the asker’s situation, and while a skilled
reader may be able to pick up on a querent’s enthusiasm or fear, it
can’t be assumed as a factor that will always surface during
a reading.3

When the cards are drawn, we have the Two of Swords reversed in
the situation, the Ten of Cups in the action, and the Wheel of Fortune
in the outcome. At this moment, intersections of meaning are the most
relevant aspect. The cards can be interpreted individually, and then, to
provide our reading, in a multiply overlapping semantic web. Two of
Swords in the present could suggest, rudimentarily, conflicting options,
a bifurcated path, or the twin severing blades of scissors; with the
reversal, it suggests a difficult decision imposed from without. Given
the question, it seems to reflect the querent’s uncertainty about which
path would be best in the medium to long term for overall quality of
life. Swords is the suit of air and of the mind, of rational decisions
weighed. The presence of Cups in the action card suggests a departure
from that rationality is necessary, a move to the emotional and intuitive
qualities of the water suit; a trusting of the heart and the gut. The Ten
of this suit in particular suggests a joy and fulfilment caused by
harmony, of community, of real connection after false indulgence. We
then move to the Wheel of Fortune in the outcome position. The Wheel
alone suggests the inevitability of change; of cycles beyond human
control; of forward motion. It could signify forward progress or chaos.
Instead of telling our querent which of two career paths to pursue, one
interpretation of this narrative possibility space instead suggests she
embrace her conflicting and real feelings of the moment and become at
peace, that there is never “enough” information to make the one correct
choice. Taken all together, the reading suggests a difficult decision that
has to be made between two options and that choosing the path of
emotional fulfilment and listening to one’s heart will provide a third
path with its own set of joys and challenges.
My querent here will probably have a fairly good idea of which path

is the best for her heart, without my needing to advise her toward one
option or another and my doing that would close down certain
possibility sets of the reading that the ambiguity of our associational
meaning structure allows.

346 ■ Procedural Storytelling in Game Design

So how do I, as the reader, put together the associational meaning
structures of these cards to get a coherent and meaningful story, beyond
simply memorizing “Two of Swords means a difficult decision,” etc.?
The answer lies in intersecting taxonomies of meaning and symbolism,
and the ability to read them in layers rather than choosing only one to
focus on. Individual card meanings are actually only one taxonomy—
arguably the most important, but without paying attention to other
taxonomies such as number, Minor vs. Major Arcanas, and art and how
they layer, a great deal of interesting and personal meaning can be lost. The
first thing I look to is the presence of suits in the reading—does one
dominate? A reading that’s heavy in Swords, for example, can suggest
a command of reason and the mind over the situation, in addition to
warning about rigidity, while Pentacles would suggest that the matter is
very much grounded in the material, that situations like bills, rent, and
economic ties in relationships are on the querent’s mind or should be
considered. The Major Arcana also has its own sphere; it suggests a sense
that these matters speak to a querent’s profound self-conception or
a spiritual component, that an aspect of the situation will aid the querent
in their personal growth. Progression also matters: the tarot suits ascend in
order from Pentacles to Cups to Swords to Wands, and so a progression or
regression, especially in a three 3-card linear reading, can be interesting.
Here, we have a move from Swords to Cups, the sense that the “lower” suit
actually represents progress: that going backward actually might be going
forward. It asks us to reconsider, to double back on our assumptions.
Number also plays a role here. While Cups is a “lower” suit on the

hierarchy than Swords, the Ten is a higher card than the Two: we have
two different intersecting taxonomies to read against each other here.
Tens in the Minor Arcana signify a culmination of a cycle; in the suits
of Cups and Coins, they suggest a deeper reconnection after struggle,
while in Wands and Swords, they imply a matter that becomes too
much to bear. Though meaning varies across each individual card, each
numerological card in the Minor Arcana shares a general narrative
position with the other. To move from the Ten, the end of a cycle
fulfilled, to the card of perpetual cycles in the Major Arcana suggests
a move of progression upward in numeric terms.
In this case, Cups as a “lower suit” is overwritten by the linear

numerological progression from Two to Ten to Major Arcana and

Tarot as Procedural Storytelling ■ 347

from inverted to upright: that reading still exists, but other meanings
layer over it. I’m personally inclined to favor a numeric progression
over a suits progression, though other readers might find the latter’s
salience more significant and account for that more heavily in their own
reading of these three cards. The reading’s complexity stems from these
multiple category intersections: they don’t conflict or collapse into one
dominant linear progression. Even with a reading in which all the
tarot’s taxonomies did proceed neatly in one direction, that itself
would feel salient and be another piece of data.
But more fun comes in when we think about narrative positioning and

how easy it is to shift the meaning of a tarot spread by ostensibly small
variants. What happens if we switch our action and outcome cards? We
retain the sense that our querent faces a difficult decision, but now the
action suggested is to surrender to the whims of fortune, to accept that
both paths will have their difficulties or perhaps to take the riskier, more
challenging path! But then the outcome is the Ten of Cups—the sense
that giving into risk will provide great emotional fulfillment. Where the
first reading exhorts listening to one’s heart to find a new and unexpected
path, the second suggests giving into chaos and that the result will
provide emotional fulfillment. The elements of unpredictability and
attachment remain, but the narrative we tell ourselves about how to
reach the point is quite significantly shifted, even though the spread
contains the same individual cards.
Less significant in terms of variation, but still meaningful, is switch-

ing the position of a card from upright to reversed. The Wheel of
Fortune is the only card in the tarot deck that can’t be read either
upright or reversed, so we’ll switch the Two of Swords to upright. With
this, we get the sense that the decision is imposed internally rather than
externally—our querent’s situation materially hasn’t changed, obviously,
but our thinking about it may well have. She may be inclined to
consider her own agency in this decision more, rather than the external
factors imposing on her with a reversal. It’s a subtle shift, but one that
can change how the querent and reader view the cause of the situation.
The greatest variation comes when an entirely new card is substituted

for one of our initial three; this shifts not only the meaning of that
position but the entirety of the spread. Let’s substitute the Seven of
Swords for the Wheel of Fortune: in this case, our upward progression

348 ■ Procedural Storytelling in Game Design

is lost, and we have a Swords-heavy spread that suggests that, despite
moves toward getting in touch with her emotions, our querent’s situa-
tion will be dominated by dispassionate reasoning and carefully mea-
sured choices. The Seven of Swords signifies subterfuge, shrewdness,
and betrayal; occurring in response to the Ten of Cups, it suggests to
me a retreat from open emotion into self-protection and possibly even
paranoia. Whatever path the querent chooses, the Seven of Swords in
this position suggests a need for caution, wariness, and the potential for
betrayal: a departure from the surrender to a third, exciting path the
Wheel of Fortune previously signified.
This interpretive quality allows tarot to avoid the oatmeal problem:

the substitution of even one card asks readers to consider what multiple
aspects of the card might be implying without giving concrete answers.
It’s up to the readers to fill in the gaps and thus supply the most
narratively satisfying piece of the procedural system themselves.
Certain individual aspects of tarot can be duplicated digitally or in

narrative design: the Golden Thread tarot has an accompanying app
that seems to be one of the most popular digital decks and allows
readers to log daily cards, spreads, and moods associated with both
analog and digital readings from a pre-selected list. As of this
writing, Emily Short is in the process of designing a Tarot of the
Parrigues, which is currently accessible in a publicly available draft
form.4 Outside of constructing allusive, layered structures of mean-
ing in a way that requires readers to apply their own personal
meanings, tarot is difficult to translate directly into a digital sphere,
as the process of reading so often depends on a back and forth
(among the reader, the querent, and the cards) that’s difficult to
capture in real time digitally. What tarot can offer narrative
designers is a strong model for how to create meaningful, personal,
and unique stories.
By using multiple co-existing layers of meaning and symbology,

and not insisting that one take precedence over the other, tarot asks
the reader to choose from multiple modes of interpretation to
construct a coherent meaning. This narrative construction is often
more personally satisfying than unstructured advice might be because
of the investment of selecting and curating meaning from a large set
of possibilities.

Tarot as Procedural Storytelling ■ 349

NOTES

1 For an excellent article on expressive ranges of tarot decks, see Emily
Short’s https://emshort.blog/2018/05/03/favorite-tarot-decks/#more-
38151

2 Some readers label “desire” and “subconscious” as “above” and “below”
respectively, suggesting both the position of the cards and the aspira-
tional nature of the querent’s struggle contrasted with what might be
hidden in the depths of their mind. Some incorporate self-image and
resources; some use the long axis of the cross to project 3, 6, 9, and 12
months ahead of the situation.

3 There are also situations in which a querent will not ask the question
verbally but will focus on it; in these situations, the reader can only look
for larger narrative patterns.

4 The project in its current form, as of this article’s writing, can be found
here: https://emshort.blog/2018/06/26/parrigues-tarot-draft/

350 ■ Procedural Storytelling in Game Design

https://emshort.blog/
https://emshort.blog/
https://emshort.blog/

CHAP T ER 27

Things You Can Do with
Twitterbots

George Buckenham

T witter, unlike most social media platforms, has a rich history of
openly automated accounts. Any social media platform of

a significant size will have automated accounts posting spam—but
Twitter also has automated accounts posting generated poetry, art,
fiction and much more not easily categorized. A big reason this is the
case is Twitter’s early focus on encouraging developers to work with its
APIs (and subsequent legacy of permissive policies towards automated
accounts)—but it’s also because of the format of Twitter. Each tweet is
a small thing, jumbled into the timeline. It’s easier to generate some-
thing meaningful and interesting if it’s short and can gain strength from
the tweets surrounding it.
One genre of generated text that is a surprisingly good fit for

tweets is worldbuilding. While in games generative worldbuilding is
often very concerned with building an intricate self-consistent world
model, Twitterbots are free to just create short fragments of evocative
description. @neighbour_civs tweets every 3 hours, each time with
a short description of a people. For example:

The Wasteland-Lizard Tribe. A great poet of theirs composed an
epic about the Great Rancher. They colour their snouts with red
paste.
or

351

The “Red Antler” Society. They regard the current era as lasting
from the destruction of the Extravagant Tower to the disappearance of
the Goose City. Their longships are recognizable by their green sails.

The more details you give, the harder you have to work to keep them
all consistent. Each tweet contains just a name for the tribe and two
details, so there’s not much chance of conflict. What is there is
evocative, giving hooks that allow you to expand the world in your
head. Who is the Great Rancher? Why did the Goose City disappear?
Each tweet sits free of every othe—there’s a consistent tone but no
insistence that all of these places are in the same world.
Just as it’s possible to use small fragments of worldbuilding as part of

a larger system, it’s possible for tweets to exist as part of a larger project.
@unfamiliar_city takes after a travel guide, with tweets such as:

Don’t miss Dadoe, our favorite spot for Lourhou-style cuisine https://
unfamiliar.city/city/150001778968
and
To say “sorry” in the iyzhthar language, say “shachrukthai”

(ɬɒcɻʌkθe) https://unfamiliar.city/city/150001422085

Each of these links will take you to a larger page, with a brief
rundown of useful facts about the city in question. Following the link
in the first tweet, I find some basic words and phrases (“Hello: redou”,
“Thank you: derhou”, “Sorry: bouboubou”), current exchange rate to
the US Dollar (“$1 USD = 4.28 ladoudou”), 7-day weather forecast (as
I write this, it’s forecast to snow all week) and some tourist advice—in
this case, a fuller description of the restaurant in the tweet:

Dadoe: Owner Rhoerhourhe Bäthe has given Lourhouian-style cuisine
a modern edge while still staying true to the regional style. The
venue is stunning, stylish stone and wood third-floor room with
world-renowned charm. Be sure to try the “bfougou” (a light
soup made with rhoubou and a vegetable called boebagou).

This achieves impressive internal consistency—for example, the name
of the restaurant, Dadoe, is also given elsewhere as the translation of the
word “tasty”. These details, technically, exist outside the world of

352 ■ Procedural Storytelling in Game Design

https://unfamiliar.city/
https://unfamiliar.city/
https://unfamiliar.city/
https://unfamiliar.city/

Twitter—but in much the same way that a human’s feed can be valuable
because it links to a lot of interesting stuff, @unfamiliar_city’s tweets are
valuable as a portal to and a way of surfacing the richness of the
generator powering the unfamiliar.city website.
As well as containing text and links to external content, tweets can contain

embedded images and videos. My bot, @soft_landscapes, generates a pastel
mountainscape every six hours. Each image contains a series of mountain-
top crests, receding into the mist. Its tweets work in much the same way as
@unfamiliar_city or @neighbour_civs—each tweet exists in its own beauti-
ful, isolated world, evoking thoughts of what lies beyond the frame. While
outputs from the bot have been exhibited as standalone artwork, they are
more properly appreciated as an ongoing process, a sampling of an interest-
ingly crafted probability space of possible landscapes.
For example, that probability space is focused on a region that

generates delicate pastel views, but it also includes smaller, rarer slivers
of very dark views, or very saturated views. Sometimes the haze is
strong enough that no mountains are visible—while typically an image
containing nothing but a flat, off-white, rectangle would be a failure of
procedural generation, here the surrounding context (in a series of
views of landscapes, on an account that claims to generate views of
landscapes) just makes you think “oh! it’s very foggy there”, and this has
been my reaction when I climb to the top of an actual mountain.
It’s possible to focus on arresting images, even when creating a bot

restricted purely to text. An early inspiration for me was the bot
@tiny_star_fields, which produces tweets that look like this:

*. .

✺ ✹
✫

✺ ⋆ ✧ ✦ .

 * ✺ . ·

✺ · *

Things You Can Do with Twitterbots ■ 353

It’s beautiful—both for its interest in and commitment to the glyphs it
uses and for the way that you immediately extrapolate from those
glyphs to the night’s sky. I look at its 180 characters of assorted
Unicode, and I think of sitting at a campfire in the desert, staring up
at the vast sky and marvelling at all of the stars I can’t see back home,
seeing the Milky Way for the first time.
Within the wide fields of Unicode also live emoji. Every few hours,

@skeletonsday posts an emoji skeleton going about its day. Each tweet
is just a few symbols, but it’s enough to construct a whole narrative.
Skelly says no to a frog. Skelly goes to SeaWorld. Skelly discovers aliens.
What an adventurous life Skelly leads, all suggested within a few
characters, with the help of all the overloaded context we apply to
emoji.
All the bots we’ve considered so far post a stream of independent

tweets and so suggest a continuous, endless process. It is definitely
interesting to work with an art form so readily suited to the infinite
series, but there are obvious drawbacks when trying to convey
a traditional narrative (with a beginning, middle and end). The complex
state-tracking needed to form a coherent story using generative meth-
ods can be pretty daunting—but one of the best things about making
Twitterbots is that they are small, bite-sized projects that can be made
and released quickly. The form is necessarily one in which most of the
content generated will be missed, and most of the viewers of the work
will encounter it partway through. As a result of all these constraints,
the Twitterbots that are best at conveying narrative do it by establishing
a mood, giving interesting narrative details and then allowing the work
to extend out within the viewer’s mind.
Within these constraints, @ArpObservatory stands out for effectively

conveying a specific narrative. It’s the Twitter account of an astronomer
based in the Atacama Desert, Chile, and the bio reads “In July we
started receiving audio signals from outside the solar system, and we’ve
been studying them since”. Roughly every half hour, it tweets a mix of
generated diagrams (waveforms, frequency response curves, etc.), links
to actual generated audio (hosted on SoundCloud), comments on the
nature of the waveforms received (sample: “During the last 40 mins
we’ve received three confirmed audio-bursts and three more expected to
be confirmed shortly”.) and personal observations—often of the nearby

354 ■ Procedural Storytelling in Game Design

wildlife (“I just watched a ‘lava lizard’ basking by the salt flat”.), but
sometimes more reflective (“Gazing up at the clear night sky, each star
appears so close”.). Viewed as a feed, repetitions become inescapable,
and the bones of the grammars used for each part start poking through.
But the experience you get when you follow the account and see
a sprinkling of tweets within your feed is quite different—your normal
Twitter feed is sprinkled with a sense of lonely purpose and everyday
beauty from the Atacama.
As with @soft_landscapes, this is a project that is judicious about

probability. The rarity of the more personal reflections makes each one
feel special, a special insight into the scientist’s mind set and situation.
The continued ambiguity of the import of the signals (are these really
messages from aliens? Scientific caution advises against jumping to any
rash conclusions.) keeps a focus on the mood. Of course, it doesn’t hurt
that the generated images and audio are beautiful in their own right.
@ArpObservatory is also one of the best examples of making expres-

sive use of the metadata Twitter allows you—each account has a stream
of tweets and a profile with username, bio, website, location, profile and
header image, etc. These are the first impressions a bot provides, and
they set the framing for the actual tweets. There is, of course, much
more context floating around for any particular viewers: how they
found the account, who RTs the account, the replies, the followers;
these are even more important to the experience of the bot and much
harder to control for a botmaker. If you are creating bots, it’s worth
thinking carefully about any and all context you can set. Time spent
thinking about the expectations of the viewers and how to manipulate
them can be more effective than any amount of algorithm-tweaking.
In the same way that your bot should respond to the Twitter context

it is part of, it sets a context for others. By making a bot, you are
creating a machine that autonomously acts in a medium on an equal
footing with human beings. You are responsible for what it posts, and
for the results of that, in the same way that you’re responsible for posts
you make manually. This responsibility comes through in basic ways
like filtering any corpuses used for slurs, or not @-notifying users
without consent. But there are also larger ethical issues, such as you
and your bots’ relationship to Twitter the company and Twitter the
platform. You are creating art with a commercial platform, and that is

Things You Can Do with Twitterbots ■ 355

a complicated relationship. The people running Twitter have a different
set of goals to you; it’s worth thinking about where they align, and what
happens when they don’t.
Thoughts like this have led many prominent creators of bots to rethink

their ongoing presence on and creation of works for Twitter. Everest
Pipkin, creator of @tiny_star_fields, recently stated baldly “i do not want
my work to serve them; i don’t want to to increase their prestige”
(https://twitter.com/everestpipkin/status/1010585694400417792) but even
so has not stopped making bots entirely. While Twitter is not a neutral
platform, it is still a platform with reach, a platform with power.
They vowed, “from now to the death of this platform, protest bots are
the only bots i will make” (https://twitter.com/everestpipkin/status/
1010588540978098177) and created @Abolish_ICE_Now, a bot listing
US detention facilities holding immigrants, together with statistics on
the facilities, the communities surrounding them and images taken from
satellite photography or Google Images.

Bedford Municipal Detention Center jails immigrants at 2121
L Don Dodson Drive, Bedford, TX. Its last inspection rating was
‘Acceptable’. Bedford has a population of 47,617 and an elevation of
601.38 ft. Homes are 3.8% vacant, 41.2% rented, and 55.1% owned.

(attached is a satellite photo of Bedford Municipal
Detention Center) https://twitter.com/Abolish_

ICE_Now/status/1043717973242871808)

The bot follows each tweet with a translation into Spanish.

Bedford Municipal Detention Center tiene inmigrantes encerrados
en 2121 L Don Dodson Drive, Bedford, TX. La última calificación
de inspección que obtuvo fue ‘Acceptable’. Bedford tiene una
población de 47,617 y una elevación de 601.38 ft. El ingreso
medio por hogar es $65,579.

The bot comes from a sense of anger and wants to effect change, but it
is still thoughtfully composed and still has the care and aesthetic
sensibility that runs through all of Everest’s work. This bot does not

356 ■ Procedural Storytelling in Game Design

https://twitter.com/
https://twitter.com/
https://twitter.com/
https://twitter.com/
https://twitter.com/

playfully pretend at being anything other than a bot; its sentences are
clearly templates, and this serves to emphasize the cold anger that drove
its creation.
Of course, for many other creators, Twitter is still a playground.

Twitter is an effective medium for news and protest, but it is also used
as a medium for jokes. @vg_erotica, is a bot that, as the name suggests,
combines videogames and erotica. A few sample tweets:

He lifted his lips from where they played at the place where his neck
met his shoulder and placed them at his ear, speaking, the words low
and dark and full of wicked intent. “Tell me.”
“Back my game on Kickstarter.” - https://twitter.com/vg_ero

tica/status/999635191596544001
She lifted her chin and pressed a single, soft kiss on her lips, trying

not to notice when she leaned into the touch, when she breathed a little
sigh as she lifted her head. “Screenshot saved.” - https://twitter.com
/vg_erotica/status/1002443995040055296

Even from two tweets, you can infer the format. Hot, breathless prose,
brought down to earth with a bump by a worn-out phrase from games. The
length of tweets is perfect for this: long enough to establish a rhythm before
interrupting it. None of these tweets would be funnier if they spent longer
setting up or dwelled longer on the videogames. The incongruity that
generates the humour comes naturally from the procedural rhetoric—
sampling randomly from the space of “erotic” and “videogames” always
works, because anything sampled from one set will juxtapose against
anything from the other. Sometimes the juxtaposition works perfectly,
sometimes it falls flat, but that’s okay, because the average is good
enough, and the probability space also includes some that are very good.
Working on the same logic is @darndesttruisms, which combines

“my small child said a thing which backs up my political arguments”
and “statements taken from the American artist Jenny Holzer’s works”.
A sample tweet:

My 5-yr old kid just whispered “the desire to reproduce is a death
wish” in my ear. - https://twitter.com/darndesttruisms/status/
1014696925809930240

Things You Can Do with Twitterbots ■ 357

https://twitter.com/
https://twitter.com/
https://twitter.com/
https://twitter.com/
https://twitter.com/
https://twitter.com/

This is even simpler: the setup is less elaborate, and the Jenny Holzer
statements are taken from a single corpus and would’ve required less effort
to assemble. It’s a less funny bot, but its aims are broader than just comedy.
It triggers a sense of unease at hearing these incongruous statements from
fictional children, an interrogation into the use of rhetoric, a juxtaposition
of the grand universal statement with the small and particular. I like to
think Jenny Holzer (who displayed her truisms on posters, cinema hoard-
ings, LED screens, T-shirts and other public spaces) would approve of this
bot, and see it as an extension of her practice.
@everyword was a long-running Twitterbot; as the name suggests, it

posted every word (in the English language). At a rate of once every
half hour, it took seven years to complete its task. Over the years, it
built up tens of thousands of followers, including me. I remember a real
sense of excitement in the replies as it started to near the end of the
alphabet. What would be the final word? What would it do when it
reached the end: stop or start again at the start? Finally, it reached
“zymurgy” … and then rolled immediately onto “éclair”. The English
language has borrowed a few words from French, and the word list’s
sorting put those starting with “é” after those starting with “z”.
This again follows the structure of a joke. A context was established, an

expectation was set—at the end of “z”, the bot will complete its task. This
expectation was built up over a full 7 years of patient iteration into our feeds.
We lived with a slow advance through the alphabet. And then, the twist, the
punchline: “z”was not actually the end. As with all good jokes, the punchline
follows naturally on from the setup, but it’s not what you expected before-
hand. It’s the twist of having your mental model realigned that makes a joke
satisfying, and I still treasure the twist @everyword provided.
As well as using bots to create jokes, botmakers can also use them to

destroy jokes. Darius Kazemi is a renowned botmaker, who regularly
takes a current Twitter joke or meme and creates a bot that automates its
creation. Examples include @choppermemebot (which fits movie scripts
into the American Chopper format), @expandingbot (which generates
expanding brain image macros) and @BracketMemeBot (which takes
Wikipedia categories and makes elimination brackets out of them).
These bots are all created after a particular meme has reached a point of
saturation, where surveying your Twitter feed can feel like everyone is
just cramming arbitrary combinations of concepts into the format du

358 ■ Procedural Storytelling in Game Design

jour. By automating that process and creating a greater swell of tweets
than the format can sustain, Darius hastens the death of that particular
format (at least within the circles exposed to the bot). This can be a good
thing, as every joke has a shelf life after which it becomes tiresome.
@everyword was a very popular bot, and it inspired many imitators. An

imitator I especially enjoyed was @everyboolean. It has posted just two
tweets: first, the single word “true”. Then, the single word “false”. What
made @everyboolean so satisfying was the gap of many years between the
two tweets. During that time, the content of the second tweet could be
easily inferred, but the posting schedule could not be. Where @everyword
delivered a great twist by setting a regular posting schedule, but delivering
unexpected content, @everyboolean delivered a years-long sense of sus-
pense by having a tweet whose contents could be inferred but not the
timing. You need two instances to establish a pattern.
That long period of suspense is interesting, because it ties back to

the durational aspect of Twitter. Unlike many digital spaces, it is
a place where things can exist for a long time. It’s a way to experience
art as an ongoing process, to sit with it until it becomes background
noise. @everyword lived in people’s timelines; @everyboolean didn’t
but always threatened to send that concluding tweet. I don’t follow
many of Darius’s bots, but still they circulate through my feed via
retweets. Part of what’s good about Twitterbots is how they are best
when they respond directly to the conditions of Twitter itself: the
social conventions, the rhythms of interaction and even the specific
technical constraints on the platform.
Another take on @everyword was @everyletter123. Let me briefly

recap its tweets:

A
(20 March 2013 -https://twitter.com/EveryLetter123/status/314416
396341743616

B
(20 March 2013 -https://twitter.com/EveryLetter123/status/314416
420333166592)

C
(20 March 2013 -https://twitter.com/EveryLetter123/status/314416
396341743616)

Things You Can Do with Twitterbots ■ 359

https://twitter.com/
https://twitter.com/
https://twitter.com/
https://twitter.com/
https://twitter.com/
https://twitter.com/

at which point it stopped tweeting, presumably forever. Now,
obviously, bots break all the time. It’s hard to maintain software on
the Internet; it’s a place with constantly changing standards, every
system jury-rigged on top of five others. But this failed for a simple
and conceptually satisfying reason: it is impossible to create a tweet
containing the single letter “D”. This is because “D username message”
is the shorthand syntax for sending a direct message to someone, so any
tweet starting with D and then a space is interpreted as a command to
send a DM, instead of a tweet. This was developed when Twitter’s main
interface was SMS, but the history lives on and the restriction is still
present today.
I like to think of @everyletter123 patiently trying every day to send

the next tweet in the series. Every day, Twitter rejects it, it acknowledges
the rejection and goes back to sleep, ready to try again tomorrow.
Similarly, I like to think about the broken bot @wa_k (bio: “I want

you to know COOL kanji. Let’s learn Japanese, especially Kanji.”),
which became stuck and tweeted out “吐—MEANING: disgorge,
vomit, confess PRONUNCIATION: to, ha(ku)” six times a day until it
finally broke.
There is something about the ways that bots can break, can get stuck

in robotic patterns of behaviour, their very inhuman-ness, that asks that
you take them seriously as independent entities. Now, to be clear, all
bots are ultimately someone’s responsibility, broken or not, but I find
myself more ready to play along with the personhood of those bots that
display their artifice most transparently.
A well-functioning bot, tended to by human hands, is hard to think

of as anything but the creation of a person. It takes a broken, forgotten
bit of code, valiantly disgorging six times a day, to inspire true wonder.

360 ■ Procedural Storytelling in Game Design

CHAP T ER 28

Creating Tools for
Procedural Storytelling

Emily Short

T his chapter assumes that you have built, or are building,
a storytelling system that procedurally determines how and in

what order to show content to the player. It also assumes that “writing”
for this system involves hand authoring or importing a significant
amount of data, together with whatever meta-data is required to allow
your system to properly process it.
This is a very broad definition. It would encompass

• text adventure design systems that include object-oriented
representations of objects in the game world,

• dungeon layout systems that associate any amount of narrative
with the dungeon rooms,

• storylet-based games like Fallen London, and

• narrative systems with extensive text generation that rely on
significant corpora of words.

Not all of the observations here will apply equally to all systems;
they’re meant more as a framework for thinking about challenges
that I’ve encountered many times as I’ve built and rebuilt systems of
this kind.

361

WHAT CAN AUTHORING TOOLS FOR PROCEDURAL
STORYTELLING DO?

Creating Content

The majority of procedural storytelling systems require the developer to
create the elements of storytelling herself—whether these are lines of
dialogue with trigger conditions, storylets associated with preconditions
and effects, branching conversations, grammars for creating generative
text, or world models designed for use in a text adventure. Different
phases of the work often have different support needs.

The First Five Minutes
Often, a new system needs to be primed with some content before it can
produce any playable experience at all. This stage doesn’t matter too
much for systems that are designed to work on a single studio project.
Usually by the time you’re building a dedicated content creation tool,
you’ve already got a prototype off the ground, and new content creation
is destined to be additive. However, for any system that is meant to be
used for new work on a regular basis—and especially for systems you
expect to be used by non-professionals—it’s critical to think about how
quickly a user can get from opening the software to trying out
a playable experience. For StoryNexus, the quality-based narrative
system used by Failbetter Games, you need a sequence of storylets for
the player to get acquainted with the system and play through some
basic mechanics. That might take hours of construction, configuration,
and uploading art files. For the average text adventure, you need a room
or two and some initial inventory items and actions. For a grammar-
based system, the minimum might consist of one or more top-level
nodes to expand.
A tool providing default implementations can do a lot to get a first-

time author up and running. The text adventure development system
Inform comes with a default library that implements almost everything
you need to get a playable first room, for instance. There’s almost
nothing in it, but as a new author you can compile and run within the
first five minutes of using the tool and already have something that’s
ready for interaction. Spirit AI’s dialogue tool Character Engine pro-
vides default projects that have a few basic lines of dialogue rigged up,

362 ■ Procedural Storytelling in Game Design

so you can have a (very rudimentary) conversation almost as soon as
you start. Twine and Texture allow for playable experiences from the
moment you’ve built your first links.

Developing a Structure
So, the first interaction is in place. The next task is to make a playable
chunk: a tutorial, a chapter, or even the arc of a whole game. I often find it
useful to build an initial skeleton for the story in a fairly linear fashion, then
to come back and add branches, variants, and alternative content. Or, if it’s
a grammar-based project, I might be creating a single baseline sentence in
a generative grammar, and I expect to come back later and add variants.
In Twine, developing structure might mean making nodes that stand

in for the start and end of each scene, with the actual content of the
passage to be elaborated later between those points. In Character Engine
or Inform (very different tools sharing a concept of scenes), that might
mean describing how scenes start and end.
Quality-based narrative tools like StoryNexus, where the system is

selecting freely from a group of available storylets, can make this a bit
harder, because given a selection of storylets with prerequisites and
consequences, it’s more difficult for the user to anticipate all the
possible stat combinations the player might reach, and there’s no
explicit model of narrative content.

Matching Fiction to Mechanics
Suppose I need to make sure I have appropriate content variants to
correspond to each category in a system. Perhaps I’m writing a game
about the traditional elements, and I need an Earth, Air, Water, and
Fire version of each item of clothing. Or I’m writing storylets for
a storylet-driven narrative system, and I need three ways of advancing
the player’s relationship with a character, one based on each of the three
major relationship skills of Kindness, Cunning, and Humor. Or I’m
creating cards for a narrative deck-building game and I need to
construct six randomized disaster events. Here the author’s job is to
come up with a fictional wrapper for already-defined mechanical con-
tent. This work becomes grinding or dull, especially if you have a large
number of predefined systems elements you need to fill in. It’s easy to
fall into a rut and produce no interesting variations.

Creating Tools for Procedural Storytelling ■ 363

There are several ways that a tool can help with this. One is by
tracking content that still needs to be created and offering mechanical
writing prompts to the author in random order. Writing fictional
elements for different pieces of the system means the author is less
likely to burn out on a particular concept. It’s hard to write fifty closely
related bits of fiction in a row without falling into a bit of a rut. Tools
that can track and assign content-creation tasks like this are also useful
in collaborative projects, where different authors might be contributing
fictional tidbits for recombination.
Another option is to have the tool actually propose randomized

fiction prompts. Once I had the job of writing a number of storylets
for Fallen London. Other designers had already defined the mechanical
parameters: what player stats would unlock the storylet, what stat levels
would determine success and failure, what the value of success rewards
should be, and so on. Fallen London also has a richly developed lore
that associates different parts of the city and characters with particular
player stats. To help myself come up with appropriate mini stories
about all of these scenarios, I built a small generative grammar to
build storylet premises around particular stat combinations. Given
a request for a story about applications of the Watchful stat, it would
invent lines like:

You keep a watchful vigil on your mark’s home to gain an
introduction to your mark’s relatives, at the risk of going mad.

You try to decipher an encrypted collection of notes from a sea
voyage to gain information about your mark’s childhood, at the risk
of seeing a warped version of a priest in your dreams

The grammar would give me three of these at a time. They weren’t
always particularly good, but that didn’t matter: there was usually at
least one in the three that gave me an idea I could flesh out into a more
fully formed fiction that was thematically aligned to the assigned
mechanics.
Elsewhere, some research suggests that writers are more likely to come

up with inventive text to match predefined meanings if they’re prompted
with sample images rather than words. It would be easy to imagine
designing prompts that relied on composited pictures rather than text.

364 ■ Procedural Storytelling in Game Design

Accretive or Sculptural Writing Processes
Once an initial skeleton of content is in place, I often like to read or
play the generated game until I reach a point at which I can imagine
a cooler response, dialogue line, or event, and I add that element in that
location. For a conversation game, that might entail finding a moment
where a character could answer a question I hadn’t considered pre-
viously. For a story game, that might mean noticing a particular twist
outcome that has become possible based on the events leading up to
that point.
The appeal of this kind of writing is that it puts the author in

sympathy with the experience of the player: you’re thinking in a player
mode about the narrative, and that often leads to some of the most
satisfying insights about content.
The challenge is that not all tools are equally good at supporting this

creation mode, and some make it very difficult indeed. Tools that help
with sculptural authoring are those that

• allow a tight play/replay cycle. Inform, for instance, lets the
author play to a given point, make some changes in the source
code, and recompile and replay to the same point in the story. In
some cases, this may require retaining and reusing random seeds
as well as the history of play up to that point in the story.

• allow the author to tell a running game instance that we want to
copy all of the current state and associate it with a new piece of
content. This cuts the authoring burden and capacity for error
considerably.

During the content-building phase, my multi-author conversation game
Alabaster included a feature that let the player/co-author try interactions
like ASK (THE NPC) ABOUT LILITH. Any time the player reached
a point at which there was no answer already defined, the game changed
to an authoring mode, allowing the player to specify how the NPC should
respond at this point.
The game would then ask a few questions to flesh out what that line

of dialogue should look like and automatically write to a file all of the
data required to instantiate that dialogue in exactly that point in the

Creating Tools for Procedural Storytelling ■ 365

narrative. This allowed different authors working on the system to build
out their own areas of content—or even riff on each other’s content—
without having to learn the underlying procedures or memorize
a content tagging system.

Adding Variety
The previous authoring action was about adding more chunks of
content in order to reflect world state more completely and accurately.
This one is about adding more internal variety to content in order to
support a richer replay experience.

I love chocolate cake.
And replacing it with a token that gives alternate flavors, like
I love [chocolate/vanilla/strawberry] cake.
Though it might just as well be a replacement for the entire dish …
I love [chocolate cake/mushroom omelets].
… or for the verb …
I [love/hate/feel ambivalent about] chocolate cake.

Elaborating a section of content like this can be fun—and in many
projects, it’s possible to do almost an infinite amount of it. In my
procedural text project Annals of the Parrigues, I developed a complex
grammar for describing towns and travel but often brought in lists of
specific objects from outside. Annals of the Parrigues knows about
several hundred varieties of apple, simply because Darius Kazemi’s
procgen corpus repository1 offered me a source file that was easy
to use.
There are two big traps for authors here. One is that they will work

extensively on something that is not going to be seen much. If a given
piece of content is only going to be seen in 5% of playthroughs,
elaborating that content with hundreds of variants is likely a bad use
of time. Tools can help here by highlighting the most frequently
accessed pieces of content, either by doing some static analysis on the
available material or by taking statistics from automated testing.
The other trap, subtler and more difficult to capture, is that by

introducing variants they will actually make the average output more
boring. Suppose my initial sentence was

366 ■ Procedural Storytelling in Game Design

I love apple spice cake with goat cheese frosting.
That’s a pretty specific cake. If I then add variants
I love [apple spice/vanilla/chocolate/strawberry] cake with [goat
cheese/buttercream/vanilla] frosting.
… then the majority of generated lines will be things like
I love vanilla cake with buttercream frosting.I love strawberry cake
with vanilla frosting.

These are significantly less interesting ideas than the cake I started with.
By adding variants, I’ve actually decreased the average quality of the
output. A tool can’t necessarily capture and correct this, unless we have
well-defined metrics for the quality of generated output (in which case,
we could be filtering out bad output automatically). One facility it can
offer is to show example generations using the new grammar in real-
time. This gives the author instant feedback about whether the new
generations are better or worse than the original.

Importing Content

Not all procedural storytelling systems are about building the components
from scratch. A few experimental works in interactive storytelling draw on
crowd-sourced data to create the model of a story world. The Scheherazade
project at Georgia Tech, for instance, invites workers on Mechanical Turk
to submit short stories about familiar events such as a trip to the movies or
a bank robbery.2 From hundreds of example stories, they build a model of
how a typical trip to the movies might go and what sorts of actions are
typical at any given stage of the movie-going experience.
Jeff Orkin’s Restaurant Game project took a similar approach: Orkin

posted a two-player game in which one could act the role of
a waitperson at a typical restaurant and the other played the customer.
Each person could speak freeform dialogue or interact with a 3D
environment, for instance by sitting down in a chair or carrying
a plate of food. He then used this collection of data to build a model
of how people act in restaurants. The model captured not only the types
of behavior one might expect when authoring such a scenario—order-
ing food, paying the bill—but also some of the extraordinary tricks
played by human players, such as a customer who walked back into the
kitchen and attempted to steal the restaurant’s microwave oven.

Creating Tools for Procedural Storytelling ■ 367

Meanwhile, Gabriella Barros and other researchers working in data-
driven game creation make games that draw on Wikipedia and similar
publicly available data sources, filling in characters and situations in
previously developed templates.
Approaches driven by crowd-created or web-sourced data are less

common in commercial game production, at least so far: the quality of
the stories and the ability of the designer to control where they go is
typically not at the required level. Even in more heavily authored work
there can often be times where some form of localized import is useful.

Import and Curate
On one past project, I needed characters in the story to have fallback
remarks available if they ran out of other things to say—lines that
would feel flavorful and fit with what they’d already been saying but
wouldn’t advance the story further.
To that end, I imported a couple of hundred common proverbs from

Internet data sources, culled the list to remove things that were too specific
to our culture or too offensive to include, and then did some quick tagging
to associate the proverbs with particular themes, such as “wealth” or “love,”
as well as a positive/negative valence. I could then deploy these as needed
when the story had defined what the situation was about and whether the
line should express a positive or negative outlook on it.
Supporting importation like this often requires nothing more than

getting out of the author’s way, by offering a tool in which large amounts
of delimited data can be pasted. But one can extend this by offering
import tools that neatly extract content from online sources like
DBpedia. As one gets more sophisticated, one might also want to offer
some automated data cleaning or tools that might suggest data tags and
allow the author to correct them. When importing my proverbs,
I looked for certain keywords as indicators that the proverb was about
money, for instance.
Depending on how much of this kind of work you expect authors to

do, you might provide keyword-based tools, regular expressions, or
even machine-learning based classifiers to help sort external materials
according to whatever criteria are important in your particular story-
telling system. Human correction will likely still be needed, but the
correction may still be less work than hand-tagging from scratch.

368 ■ Procedural Storytelling in Game Design

Revising Content

The more complex the procedural system, the more unwieldy and
unpredictable revisions are likely to become. If the shape of the story
depends on a particular set of progress stats, then minor changes here
or there could drastically change how the story plays.

Refactoring an Existing System
I’ve often realized my corpus was the wrong size or that elements were in
the wrong places. Or I have two meta-data tags that are doing very similar
work and I need to consolidate them into one. Or maybe there’s a variable
that’s only checked in a handful of places in the story, and it would be most
efficient to remove it entirely, because it’s not pulling its weight. The ability
to search and replace or to move significant portions of content from one
area to another becomes critical in these circumstances.

THINGS TO THINK ABOUT WHILE PLANNING
A NEW TOOL

Think about What Kind of Procedural Aesthetic You’re Going For

Whether you realize it or not, your work is driven by aesthetic
principles as well as technical ones. What are those?

• What kinds of experiences are you eager to facilitate?

• What would you recognize as good quality?

• Is it okay or even desirable for the output to look generated, or
are you going for something that appears human-created?

• Are humorous incongruities desirable or to be avoided?

Know Your Intended Users and Their Technical Sophistication

• Are you building the tool for yourself or for others?

• Are the people you’re recruiting paid or volunteers?

• How much experience do they have building this kind of project?
Playing this kind of project?

Creating Tools for Procedural Storytelling ■ 369

I’ve seen a number of tools developed as part of publishing platforms,
with the business model that the developer will make a tool and then
authors flock to create work on that platform, and both parties will
share the profits. This model only works if the platform is easy enough
to learn and attractive enough in its output that authors are motivated
to take on the job of learning it.
Tools designed for in-house studio use can afford to be more clunky.

Speaking about the timed-dialogue tooling she developed for Ladykiller
in a Bind, Christine Love acknowledges that the tool is both unsuitable
for anyone but herself to use—and exactly what she needed.3 There’s
nothing wrong with developing a tool for entirely personal use, with
idiosyncrasies tuned to the needs of the individual creator, if the
purpose is to support the creation of a single project.
The more expert the expected user, the less time you need to spend

building documentation, tool tips, and examples. But expert users can
still benefit from time-saving shortcuts, strong testing, and good visua-
lization—and they may be less inclined than novices to request those
features, because they figure they can just forge ahead. If you are in the
position of supporting a single expert user or small group of experts,
you may want to observe their creation process to figure out what might
be slowing them down. Do they have to follow certain templates every
time they create a new element? How might that be automated?

Investigate and Mirror the Creative Terminology of Your Users

Your software is trying to meet them as closely as possible to their own
natural paradigm. Interactive narrative tends to be counterintuitive for
many people, and it places a considerable cognitive load—holding the
whole structure in your head and remembering how different world
states can proliferate and affect later outcomes, can be overwhelming.

AS YOU’RE BUILDING

Don’t Design Only for What Looks Good with a Small Amount
of Data

What works for a small project is rarely the same thing that works for
a large one.

370 ■ Procedural Storytelling in Game Design

Anticipate the Founder Principle

The first significant works using this software will make a big impres-
sion on those who follow and establish the kind of work that’s done
with it for a long time (perhaps permanently). This was certainly the
case for old-school text adventures, where the brilliant classic Adventure
set a precedent for underground adventuring, mazes, and light puzzles
for many games to come. Subsequent commercial enterprises, especially
Infocom, intentionally explored how other genres could be realized in
text adventure form, but certain conventions from Adventure (and then
Zork) persisted for many years, even when there were tool sets available
allowing for much more varied development.
Along the same lines, many visual novels adopt an anime style and

presentation not because they have to, but because these are the examples
that guide their development. Many works created with Choice of Games’
ChoiceScript tool recapitulate the style and design of Alter Ego (the
original 1980s work that inspired ChoiceScript) and the first few Choice
of Games branded games, especially Choice of Dragons and Choice of
Broadsides. Lifeline games have tended to share the chatty style and
episodic danger structure of the original game in the series.
Note that it’s not necessarily a bad thing at all for new work to draw on

the design example of previous material. Sometimes, if the tool is designed
to build materials for a branded series, this is actually a good thing because
the market for new work knows what to expect from a new piece.
What if you’re trying to create a more general tool, one that could be used

for many different purposes by many different users? In that case, it’s worth
producing multiple examples in different styles as early as possible in the
lifecycle of the tool. When we wrote the documentation for Inform 7, we
included several hundred code examples that could be compiled and played,
and we intentionally developed these to cover a wide range of genres, styles,
and types of gameplay. We wanted new readers of the Informmanual to feel
that whatever their game concept might be, it was worth pursuing, and they
didn’t need to make their idea conform to previous genre norms.

Don’t Build GUI Tools Too Soon

If you’re building an engine to produce a procedural narrative, you’re
likely discovering new kinds of data you need to represent or new

Creating Tools for Procedural Storytelling ■ 371

structures that allow you to be more expressive. A GUI tool usually
constrains you to the data structures you’ve anticipated. Starting with
something more flexible—an extensible XML or JSON data structure,
a domain-specific language—will allow room to iterate on what you
expect the system to do.
If you’re working with enough novice content creators that you

absolutely must have a GUI early in the process, then give yourself the
option of adding free-text custom tags so that people can continue to
add hooks of their own as they go.

Expect to Accommodate Hacks

No matter how genius your system, there will always be some point in the
project where you want to do something peculiar that isn’t otherwise
accounted for: an Easter egg interaction, a special consequence that
doesn’t happen anywhere else, whatever. Make sure your tool allows you
to add arbitrary tags or hooks to data, outside of the normal structure. This
is useful for things that turn out to be one-offs, and it’s also useful for
prototyping new functionality to which you haven’t yet decided to commit.

Beware Complexity Cost

When you find yourself building a hack into your system in order
to accommodate new behavior, it’s often tempting to decide you need to
add a whole new layer to the system. In practice, sometimes it’s better to
live with a handful of hacks—not just because you have finite time, but
because the more moving parts the system has, the more work the author
is likely to have to do. In systems where the quality of the experience
correlates with the amount of total content available (and that is often
true at least to some degree for procedural storytelling systems), creating
authoring friction is making your output worse because you’re accepting
a hit to the amount of content you can produce. So when introducing
a new system feature, you have to consider whether that feature is
making the experience enough better to compensate for the costs.

Collect Feedback in Writing Workshops

At Spirit, where I now work on the procedural dialogue system Char-
acter Engine, we introduced a tradition of writers’ workshops, which are
meant to emulate the writing workshops of short story authors. The

372 ■ Procedural Storytelling in Game Design

idea is to get people talking about what they’re building, what their
aesthetic aims are, and where they’re running into problems. It’s not
a testing venue per se, and we leave the more judgmental feedback at
the door. The aim here is to find out what authors want to create, and
what’s stopping them.
Before we instituted this custom, we found that authors would often

not raise issues about tool problems they encountered immediately
because they assumed there was a solution and they were just “being
stupid” in not realizing how to solve something.

No Tool Is Ever Ready until It’s Been Used to Write a Sizable Project

… and probably not until it’s been used to write two or three projects.

Port Related Work to Your System

If you’re building a system with similar aims to an existing tool, it can
be very instructive to get permission to port work from other systems to
yours. In the 1990s and 2000s, the interactive fiction community
developed a simple standard game, Cloak of Darkness, that was ported
to dozens of different interactive fiction tools, as a way of demonstrating
their functionality and giving authors a sense of the strengths and
weaknesses of different systems.4

In my own projects, I’ve ported my early parser IF game Galatea
from Inform 6 to the Versu and Character Engine systems and ported
short pieces written for Inform 6 to the very different Inform 7. There
are several major advantages to doing this. First, it helps deal with the
problem of having sizable projects in your new system: porting can be
faster than inventing new content from scratch, and this gives you the
opportunity to develop quite a lot of new material relatively quickly.
Depending on the details of each system, you may even be able to write
a script to port some of the old material automatically.
Second, porting full-sized projects will highlight both the strengths

and the weaknesses of your system. You are likely to find there are
some effects in the old system that your new system doesn’t replicate—
but you may also discover that some formerly difficult things have
become easy. Note that this doesn’t replace the need to build new
projects natively in your tool. Older projects may not test all aspects of
what you’ve created!

Creating Tools for Procedural Storytelling ■ 373

Budget for Extensive Iteration

Usually, building the tool will reveal new levels of productivity that are
possible once the tool baseline is available. This point is probably obvious to
most people who work in games, where iterate is the baseline directive of all
directives. But I’ve often seen production schedules that assume that once
the initial set of specs is fulfilled, no more work will be required on the tool.
As a consequence, you get studios working with tools that aren’t quite fit to
purpose, or that over the years have built up a tremendous technical debt,
until they need to be scrapped and replaced entirely—and the replacement
usually turns out to be a long, slow, and iterative process as well.
A better and more self-aware approach is to assign a certain amount

of ongoing overhead to tool improvements and to keep in regular
contact with your content-creation community about what new features
it would like to see. Inform 7 users are still proposing improvements to
a tool that has been under development for two decades.

Use the Tool to Reinforce Good Design Practices

As you build multiple projects using this tool, you’ll start to get a sense
of design idioms, of techniques that work or don’t work.

Allow the Tool to Be Clever

We often expect to see AI techniques in games; we don’t always expect to
see them in the tooling itself, reducing authorial burden or suggesting new
possibilities for development. There are fields of research that do address
this—computational creativity research touches on ways for computers to
assist in human design, and “mixed initiative” tools are those in which the
computer and the human user take turns adding elements to a creation or
bringing the design along in some way. Mike Cook’s Danesh tool analyzes
the expressive range of procedural generators, helping authors tweak their
work toward a richer variety of output.5

Expect Users to Be Forgetful and Do Not Expect Them to Be
Working Alone

Solo creators sometimes do enter a flow state where they have all the
major concerns of their work in their heads at once—but this can be
hard to maintain. It’s impossible if the project belongs to a team rather

374 ■ Procedural Storytelling in Game Design

than an individual or if someone is likely to go away from the project
for a long time.

Help Your Users Test Their Work

For even the least procedural types of interactive narrative, world state
can get so complex that quality assurance testers will never be able to
explore every possible scenario. While one can’t completely replace QA
testers, it’s often desirable to test the resulting system in an automated
way, trying to answer questions such as

• Are there any points at which the engine runs out of viable
content? Dead ends of the narrative where the player would be
unable to proceed?

• Are there pieces of content that cannot be reached or that are
reached very rarely?

• How long is the average playthrough relative to the total content size?

Help Your Users Define Their Own Tests and Metrics

Inform allows users to create a range of test commands that they can
execute to verify the behavior of a specific command sequence.
Anticipate how your users will visualize the structure of their stories

and the outcomes of their tests. In procedural narrative spaces, visualiza-
tions very often focus on narrative branching. But many of the types of
games described in this book do not simply branch—or they may involve
such a large and complex structure that a branching visualization will hide
the forest with thousands of trees.

NOTES

1 https://github.com/dariusk/corpora
2 http://eilab.gatech.edu/open-story-generation
3 www.gdcvault.com/play/1024403/Micro
4 Roger Firth’s website containing the specification for Cloak of Darkness

and many example projects can still be found at www.firthworks.com
/roger/cloak/.

5 www.danesh.procjam.com/

Creating Tools for Procedural Storytelling ■ 375

https://github.com/
http://eilab.gatech.edu/
www.gdcvault.com/
www.firthworks.com/
www.firthworks.com/
www.danesh.procjam.com/

This page intentionally left blank

Index

Page numbers in italic indicate figure.

Page numbers in bold indicate table.

10,000 Bowls of Oatmeal problem, 15, 32,
45–46

80 Days
knowledge chain, 84, 85–86
revisit and backtracking ban, 83
weave structure, 79–81

A

Abstraction
The Curious Expedition, 128–131
The Sims, 124
Triple Town, 141–142

Adventure, 371
Adventure stories, Hero’s Journey, 31
Aesthetics

authoring tools, 369
challenge of, 14–15
evidence of process and forces, 15

Age on Conan
Hyborian Adventures (2008), 275

Agents
Dwarf Fortress, 155
rule-based interactions, 139
and simulations, 11–13
strategies, 139

Alabaster, 365
Algorithms

attributed intelligence, 20, 54
content selection, 43
filling space, 8

start simple, 18
training text corpus, 221

Analog content generation, 9
Analog works and procedurality, 210–214

audio walks (Janet Cardiff),
212–214, 215

post-show debrief, 211, 212
Sleep No More, 210–211, 214
Then She Fell (Third Rail Productions),

211–212
Animal Crossing, 109
Animal Town, 109–110
Animation, real-time, 40
Annals of the Parrigues, The (Short), 193,

194, 202, 366
Another Door Opens, 25, 26
Answer Set Solving, 11
Apocalypse World, 264
Apples to Apples, 210
Archetypes, 121, 269, 276–277
Argument Champion, 53
Art theory, 6
Artifacts, 3–4, 15
Artificial intelligence systems, Rise of

Nations, 18
Artist-in-a-box, 5–6
Assassin’s Creed Black Flag, 31
Assassin’s Creed Freedom Cry, 32
Assassin’s Creed Liberation, 29–32
Audience education, 147
Audio works (location-based)

377

Computational Flâneur,
cadence, 223–224
developing in the real world, 219–220
geofences, 220–221
moments of synchrony, 222–223
neural networks, 221–222
repeat visitors, 224
soundscape effects, 221
Her Long-Black Hair (Cardiff),

212–214, 215
Authors, mastery of subject matter, 1

B

Backstories, emotionally engaging, 239
Bad Dreams (collection), 29
Bastion, 319
Battlecakes, book name generation,

105–107, 106
Beartopia, 146
Bejeweled, 144
Binaural audio, 215
Blade Runner (adventure game 1997),

164–165
Blades in the Dark, 264–265
Blog posts, 296
Board layout, 8
Boiling frog metaphor, 251
Borderlands, 60
Brain

hardwired to make stories out of facts,
229, 238, 241–242, 265, 267

making characters “real”, 33–35
Braitenberg vehicles, 11–12
Brutalist building problem, 205
Brute force solving, 11, 39
Byte, Freeman article, 66, 73

C

Cards against Humanity, 210
Casual match-3 genre, 144
Caves of Qud

generating histories, 179–192; causality
188–189; conclusions 191–192;

constraints and aesthetics
183–184; cultural artifacts
184–186; domain 183–184, 189;
entities and events 180–181;
gospels 184, 185–186, 187, 188,
189–191, 190–191; hand-crafted
narrative 183; historical logic
180, 183, 188, 191; inspiration for
182; model in action 186–188,
188; narrative coherence
189–191; primer 182–183;
random branching events 187,
188; sieges a city event 188–189;
subjectivity 181–182; sultans
183–184, 185–187, 189;
world-creation engine 184

Cellular automata, 13
Character arcs, 311
Character Engine (Spirit AI), 362–363,

372–373
Character failing, 116
Character judgment method, 272
Characters

age, 293
back-and-forth conversations, 325–326
believability standard, 286, 287–288
blandness, 284–285
contradictions, 285–287, 293
fixed, 125
gameplay-relevant aspects, 284–285
identity contradictions, 287–290
“Indian” cultural background, 288–289
love of, 31–32
and mechanics, 32
Mexican, 289
micro-stories, 300–302
naming, cultural distinctions, 289–290
nicknames, 285, 289–290
passive, 277
permadeath, 283
robust characterization, 269
simple list generation, 33–35, 34
trait modification, 311–314
trait rules, 285
trait tag, 286–287, 291, 292–293

378 ■ Index

traits, 286–287, 291–293, 300, 304–306,
308–309, 311–314

trickster, 277
valid voice choices, 292
voiceover actors, 291–292

Charts, 24, 24
Choice of Games’ ChoiceScript tool, 371
Choice paralysis, 315
Choose your own adventure (CYOA)

books, 77, 77, 86
structure, 78

Church in the Darkness, The
dynamic storytelling, 159–176;

“Chapter Titles” 173–174; clues
(documents) 170, 172;
conclusions 175–176; core
systems 165–171; dialog (voice
acted) 173; different answers
each time 161–162, 166, 173;
Freedom Town 160, 167, 168,
174; game pitch 159–160;
inspirations 162–165;
motivations 161–162; narrative
via PA 162, 169–170; player
choices 171–175; players’ goals
168–169; playing lethally 172;
playing same start state 167;
playthrough time 166;
propaganda 162, 163; stealth
gameplay 172; story summary
(ending) 174

Cities:Skylines, 243
City-building genre, 243
Cloak of Darkness, 373
Clue, 163–164
Coding, complex structures of

storytelling, 63
Colonialism see Triple Town
Command line interface, 92
Communication theory, 143
Component-driven engine, 322
Computational Flâneur

cadence, 223–224
developing in the real world, 219–220
geofences, 220–221

moments of synchrony, 222–223
neural networks, 221–222
repeat visitors, 224
soundscape effects, 221

Computer role-playing game (CRPG),
early limitations, 66

Computers, and implicit knowledge, 6
ConceptNet, 53–54
Conditional rules, 7
Constraint solvers, 10–11, 14
Constraints, 4

description problems, 14
and grammars, 10
offensive content, 14

Content
adapting to player choices, 37–48; the

big picture 47–48; choosing part
to adapt 38–42; combining
sub-content 42–43, 48; control
over specificity 45–46;
implementation effort and
reactivity 41; new way of creating
46–47

analysis tools, 366
as conditionals, 81
definition, 38
hand-crafted and procedural mix, 91
missions, 38–39, 43–44
offensive, 14
pre-created and dynamic mix, 38
progress and visibility, 46–47
static, 46
tag-based generation, 43–44

Content selection algorithms, 43
Context

changing, 21–22
implicit/explicit, 44
using, 20–21
and worlds, 177

Corpus
training text for algorithms, 221
wrong size, 369

Craft (random number generator), 11
Creative thinking, 118
Creepifier, 41–42

Index ■ 379

Crime solving, 66
CRPG (computer role-playing game), early

limitations, 66
Crusader Kings II, 276
Cues, 155–156
Cults, 161–162; see also Church in the

Darkness, The; Shrouded Isle, The
charismatic leaders, 161
group members, noble motives,

162–163
looking from outside, 175
values, 304

Cultural identities
awareness, 288
“Indian” cultural background,

288–289
Cultural narratives, 181
Curated narrative, 91–102

conclusions, 101–102
different meaning for different

players, 93
explore, adapt, survive, 91–92
integrating gameplay and narrative,

101–102
narrative as a lure, 99–101
order matters, 93–97, 98
player story, 91, 92
player’s choices, 97–99
role of emotion, 96–97
skeleton plot, 92–93
viewpoint anchors, 93, 96

Curious Expedition, The
abstraction levels, 128–131
diary events, 131–132
diary screen, 128
different interpretations (same event),

131–133
event layer, 129–131
gameplay, 127–128
night camp example, 128, 129–130,

129, 133
sentence layer, 131
story arcs, 133–134
transgressive play, 132
world layer, 128–129

Cuteness, player expectations,
143–144, 146

CYOA (choose your own adventure)
books, 77, 77, 86
structure, 78

D

Darkest Dungeon, 280–281
Data, crowd-sourcing, 367–368
Databases of knowledge, 53
DBpedia, 368
Deadline (text adventure), 65, 66
Deal breakers, 4
Death in the Afternoon (Hemingway), 295
Debugging, dialog, 335
Deep content, 123
Deep learning, 38, 222
Descriptions (generated)

dynamic and reactive, 41-42, 82
and stories, 153, 184
Twitterbots, 351-352
Voyageur, 193–207; conclusions

205–207; example text 196;
filtering 200–201, 201, 204–205;
grammar 201–202; phrases
204–205; planet generation
202–205, 206; setting the stage
194–196

Design systems, generating in the real
world, 219–220

Detective tools, 279
Diablo, 59–60
Dialog, 317–336

authoring tools, 333–335
automatic triggers, 322–323, 322
barks, 46, 319, 329
characters, back-and-forth

conversations, 325–326
code-driven approach, 327–328
complex responses, 326–327
conclusions, 335
context-sensitive vocalization, 320–321
data structures, 329–333, 331, 333, 335
data-driven context, 327

380 ■ Index

debugging, 335
fallback remarks, 368
game-triggered events, 320
location triggers, 317
memory, 323–325
mission giving character, 44–45
narrative momentum, 88
NPCs (non-player characters), 46,

318, 322
overview, 317–318
relational databases, 334
repartee, 325–326
round-robin behavior, 327
rule callback, 327
rules database, 332–333, 333
running gags, 323
scripting language, 334
scripts, 320, 321, 323–325, 326,

328–329, 333
sorted keys, 332
state machine, 318–319
system of general rules, 319, 321,

332–333, 333
usability, 327–329
use cases, 318–319
Valve’s rule-based system, 43
“vocalize” button, 320
world state, 317, 319, 324, 328–329

Die rolls, 265, 266, 268
Digital apprentices, 50
Distribution methods

music and language, 7
treasure, 7, 18–19

Divination methods see Tarot
Dominion, 314
Domovoi, 108–109
Down the Rabbit Hole, 29, 30
Dramatic currency, 123
Dramatic gameplay see Sims, The
Dungeon World, 258–259, 261, 264
Dungeons & Dragons, 257–268

Dangers, 261–263
Deal Damage, 259
die rolls, 265, 266, 268
Discern Realities, 259

event sorting tools, 267–268
failing forward, 264–268
game master, 258, 259–260, 265
Hack and Slash, 259
Moves, 259–261, 262, 264
narrative connections, 268
narrative structures, 260, 263
overview, 257–259
procedural content, 267
randomness, 267
Show Signs of an Approaching Threat,

259, 263
DunjonQuest, 66
Duskers

different storylines, 96
emotional design pillar, 96–97
example logs, 93–95, 95
fun moments, 99–100
integrating gameplay and narrative, 99,

101–102
isolation theme, 97
logs, 99
messages, 97
overview, 92
pandemic narrative, 96, 100–101
playtesting, 99–100
realism design pillar, 99
skeleton plot, 92–93
viewpoint anchors, 93, 96

Dwarf Fortress
blog posts, 296
cellular automata, 13
combat reports, 156
designing, 149–154
detailed simulation, 152
emergent narrative, 149–158
fanfiction, 110–111
functional text, 45
language system, 153–154
Legends mode, 157, 181
mechanics, 152–153
modes, 157, 181
narrative mechanisms, 153
player perception, 276
player stories, 151

Index ■ 381

player’s perspective and exposition,
154–158

spatial progress, 156
story snippets, 150
trivial matters, 151–152
world generation, 158

“Dying Earth” genre fiction, 182
Dynamic narrative system, 159
Dynamic storytelling (heavily authored)

see Church in the Darkness, The
Dynamically determined location, 38

E

Easter eggs, 372
Elder Scrolls, The, 181
Elite (original), 54, 194
Embodied play, 210
Emergent gameplay

Blade Runner (adventure game 1997),
164–165

NetHack, 132–133
Emotional arcs, 223
Emotional engagement

dirty procedural narrative, ; absences
232–233; pull vs. push
storytelling 231–238; translucent
lies 231

generated personalities, 278
imbuing meaning, 96–97
and mental work, 230

Emotional payload, abstract thinkers, 135
Emotional responses

lightly drawn characters, 33, 34
storytelling techniques, 48

Emotional storytelling, 109
Emotions

gameplay amplification, 135–147;
communication failure 143–144;
conclusions 146–147; failures of
taste 144–145; identifying a
theme 139–140; and mechanics
136; narrative failure 142–143;
observing in the prototype 135,
136–138; occurrence levels

140–141; richness 138, 146;
two-factor theory of 140; using a
theme 140–142

Encoding knowledge, grammars, 9–10
Environmental storytelling, 83–84, 97–98
Epitaph, 181
Ethical issues, 49–62

algorithms, attributed intelligence, 54
coded actions, 50–52
game input, 57–58
“Google milking”, 55–56
gravestone inscriptions, sexuality and

gender, 50–52
information from the Internet, 53,

55–56
language, ban list, 54
offensive content, 54
pioneering and responsibility, 62
playthrough uniqueness, 59–61
real world knowledge, 52–57
real world people, 57–58
responsibility for generators’ output,

58–61
Euphemisms, 60
Experience, uniqueness, 41
Expressionist (system), 39

F

Faction-based narrative, 239
Failing forward, Dungeons & Dragons,

264–268
Fallen London, storylets, 45, 364
Fanfiction, 110–111
Fighting Fantasy books, 77–78
Filters, Voyageur, 200–201, 201, 204–205
Firewatch, 334
Frameworks, 5–6
Freeform experience, 210–211
French Canadian canoe men, 195
Frostpunk, 241–255

boiling frog metaphor, 251
Book of Laws, 244, 248, 250, 252
call to action, 246, 248–249, 253
developing, 243

382 ■ Index

endlog, 254
final version, 252–255
gameplay loops, 247, 248, 249, 252, 254
human AI agent needs, 244
laws, 249, 250, 251–252, 253
making sense of the world, 241–242
mechanics, 250
mood of society measurement, 246,

249–250
non-trivial concepts, 248, 255
player agency, 244, 245, 247, 248–252
players didn’t really “get it”, 252,

254–255
players’ post-playthrough reflection,

253–254
playtesting, 247
Prophet arc, 246–247
prototype 1: society 243–245
prototype 2: Prophet 246–248
prototype 3: player agency 248–252
reflective layer, 245, 252, 254
society layer, 245
survival dilemma, 247
survival-city builder, 243
totalitarian state, 251
UI tracker, 246
visceral layer, 248

Froth, 295–296, 298, 302
FTL

Faster Than Light, 298
“Fun” level, 4

G

Galatea, 373
Gambler’s Fallacy, 229
Game Developers Conference, Reynolds

lecture, 18, 20
Game input, chat messages, 57–58
Game master, 258, 259–260, 265
Game of Life (Conway), 13
Game prices (1980s), 67
Game scripts, 79, 80
Game theory, 139
Game writing, difficulties, 44

games-as-entertainment boundaries,
241, 255

Generate and test, 13–14
Generators (getting started with), 3–16

artist-in-a-box, 5–6
generate and test, 13–14
rules to generative methods, 6–13
ways generators fail, 13–15
what are you making, 3–4

Genetic algorithms, 12–13
flower-evolving app, 9, 10
reproduction and metaheuristics, 13

Golden Thread tarot, 349
Gone Home, 97–98
“Google milking”, ethical issues,

55–56
Grammar replacement, 187
Grammars

and constraints, 10–11
encoding knowledge, 9–10
text generation, 193–194, 196–197,

201–202
Grammatical rules, 39
Granularity levels, 93
Gravestone inscriptions, ethical issues,

50–52

H

Hand-crafted content, 91, 183, 239
Heaven’s Vault, 83–84

knowledge model, 89
knowledge states, 86–87
pacing, 88

Her Long-Black Hair (Cardiff),
212–214, 215

Her Story, 93, 96, 98
Hero’s Journey, 31
Historical account, 180, 181, 183
Historical logic, 180, 183, 188, 191
Histories (generating) see Caves of Qud
History

as artifact, 182, 183
as process, 182
rhetorical function, 181

Index ■ 383

Human condition
thorough investigation of, 23–24
understanding and connecting, 35

Humor
comedy, 209,210,277,282,358
jokes, 20–21, 223, 278, 357–359
The Sims, 124
surreal, 20–21

“Hyperdrama”, 210–211

I

“Image of the City” (Lynch), 15
Implicit knowledge, 6
Improv (system), 39, 193–194,

196–199, 198
filtering step, 199
weaknesses, 203
Wikipedia article text, 197–199

Inconvergent.net, 8
Inform (7), 334, 362
Innovation, obsession with idea,

23–24
Interactive fiction structures, 25
Interactive generators, 8
Interactive stories, origins, 1
Interpretations (different), of same event,

131–133
InterProject, 24, 25, 29
Irrational Games, 43

J

Jokes, 20–21, 223, 278,
357–359

K

Kentucky Route Zero, 107
Keyword-based tools, 368, 369
King of Dragon Pass, 277
Knowledge, as an acyclic directed graph,

84–86
Knowledge intervals, 84–85
Knowledge webs, 86–87

L

Ladykiller in a Bind, 370
Language, ban list, 54
Language system, Dwarf Fortress, 153–154
LARPing (Live Action Role-Playing)

communities, froth, 295–296
Leap Day, 146
Left 4 Dead, 317, 329
Letter generation, Animal Town, 109–110
Level generation, 18, 22, 52–53, 61
Linear stories, open world game, 31
Literature, adaptations, 65
Live Action Role-Playing (LARPing)

communities, froth, 295–296
Location cruft, 83
Location-based audio

Computational Flâneur, ; cadence
223–224; developing in the real
world 219–220; geofences
220–221; moments of synchrony
222–223; neural networks
221–222; repeat visitors 224;
soundscape effects 221

Her Long-Black Hair (Cardiff),
212–214, 215

Location-based speech triggers, 317
Locations

dynamically determined, 38
objective text trigger, 39

Loops
Roomba style loop, 83, 88
and sequences, 81–82
types, 242

Ludic culture, 65

M

Machine learning, assumed, 20
Mainframe, 42–43
Markov chains, 221–222
Maslovian hierarchy of needs, 244, 275
Maya animation channel, 7
Memory Blocks, 109–110
Metaballs, 8

384 ■ Index

Mexican characters, 289
Microsoft localization team, 289
Micro-stories, 300–302
Mission giving characters, 40–41, 44–45
Missions

adapting to player choices, 38–39
branching, 45
hand-authored, 46
NPCs (non-player characters), 40
selecting content, 43–44
transitions, 45

Monster Manual, 266–267
Monsters, distribution, 7, 19
Moon Hunters, 274
Moral dilemmas, 303, 315
Morrowind, 181
Murder on the Zinderneuf (1983), 65–73

1930s pulp-action genre, 67–68
airship setting, 67, 68
background information, only in

manual, 71–72
cleverness of, 73
clues, 69, 71
collect evidence, 68–69, 70, 72
depth to story, 71
detective rating, 69
game time, 68
interface, 69
Madlibs-like system, 164
mechanics, 164
player’s role as detective, 68, 68
randomly generated cases, 70–71, 72, 73
“red herring”, 164
re-playable adventure, 67
suspects’ connections, 69
technical limitations, 72, 73

Music
Musikalisches Würfelspiel, 8
transposing, 7

Music theory, 5
Mystery genre, interest in, 65
Mystery House (1980), 65
Mystery Mansion (1978), 65
Mystery Master, 66
Mystery stories, 65, 161

N

Names
common English, 290
cultural distinctions, 289
and nicknames, 154, 285, 289–290
Old Testament name list, 290

Narrative closure, 29
Narrative coherence, 189–191
Narrative design ; see also Curated

narrative
about to state, 29
different solutions, 47
faction-based, 239
NPC barks, 46
technical vs. aesthetic, 50

Narrative mechanisms, Dwarf Fortress, 153
Narrative momentum (designing for),

75–89
calculating momentum, 78–79
choose-your-own-adventure books,

77, 77
conclusions, 89
content as conditionals, 81
dialogue, 88
Fighting Fantasy books, 77–78
game scripts, 79, 80
graphical context, 83–84
knowledge as an acyclic directed graph,

84–86
knowledge model use, 87–88, 89
Knowledge webs, 86–87
nameless henchmen, 75
only forward design, 76–78, 87
opening the flow, 78–79
player driven experience, 76, 79
player knowledge-tracking, 84, 87
revisit and backtrack, 78, 83
Roomba style loop, 83, 88
sequences and loops, 81–82
weave structure, 79–81

Narrative potential, 152
Narrative slump, 75
Narrative systems, 165–166
Narratives ; see also Curated narrative

Index ■ 385

brain’s pattern recognition, 229, 238,
241–242, 265, 267

singular author, 1
Narratological theories, 5–6
Nature, inspiration from, 11
NBA Jam, 297
Nested, 3, 9
NetHack, 132–133
Neural networks, 221–222
Nicknames, 154, 285, 289–290
No Man’s Sky, 7
NPCs (non-player characters)

authoring tools, 365
barks, 46
dirty procedural narrative, 230, 236
event-driven barks, 319
Maslovian hierarchy of needs, 275
mission dialogue, 44–45
mission giving role, 40
personality type, 109
player attachment, 33
seeming to be real, 32–33
simple conversations, 318
The Sims, 117, 119, 120
as story daemon, 42
traits, 120
wisecracking sidekicks, 322

O

Objective texts, location trigger, 39
Offensive content, 14, 54
Old Testament name list, 290
On Becoming a Novelist (Gardner), 295
Only forward design, 76–78, 87, 116–117
Open world games

linear stories, 31
missions, 38–39
player expression, 37–38

Open-source resource, 196
Opera Omnia, 182
Oregon Trail, 298
Orthogonal traits, 120
Output, not interesting, 14–15
Overland, 296, 297

character traits, 300
dialog snippets, 299
micro-stories, 300–302
player options, 298
plot, 298, 299
post-apocalyptic backstories, 300
resource-oriented actions, 300

Overwatch
Play of the Game, 39–40
“skins”, 40

P

Pacing, 41, 88, 138
Pandemic, 296
Parametric methods, 7–8
Party games, 210
Pen and paper role-playing games, 125
Perception vs. reality, 19–20
Perceptual differentiation, 15
Perceptual uniqueness, 15
Perlin noise, 21
Personalities, 271–282, 303–316

aesthetic identity, 316
after-the-fact investigation, 278–279
archetypes, 276–277
behavior-first messaging, 274
character arcs, 311
character generation, 304–306
character judgment method, 272
character traits, 304–305, 306, 308–309,

311–314
character types, 277
comedy, 277–278
definition, 271
emotional investment, 278
extreme, real life, 276
interaction, 306–311
Maslovian hierarchy of needs, 275
mythic hero traits, 274
passivity and non-action, 277
personality change (power of), 280–281
player engagement with, 278
player’s interpretation process, 271–274
reaction-based expressions, 279–280

386 ■ Index

reactions and actions, 279–280, 280, 281
“realistic” subtlety, 276
reasoning and behavior, 271, 272, 274
secret systems, 275–276
subtle behavior patterns, 276–277
“tell then show” approach, 273
trait modification, 311–314

Personality-interpretation gameplay,
272, 276

Pirates!, 194
Planet generation, Voyageur, 202–205,

204, 206
Play-by-play commentary, 319
Player agency, 97–98, 101, 258
Player attachment, NPCs (non-player

characters), 33
Player choices

adapting content to, 37–48; the big
picture 47–48; choosing part to
adapt 38–42; combining sub-
content 42–43, 48; control over
specificity 45–46;
implementation effort and
reactivity 41; new way of creating
46–47

The Church in the Darkness, 171–175
curated narrative, 97–99
game objects, 155
selecting content, 40
telegraphing, 165

Player commitments, 123
Player expectations, cuteness, 143–144, 146
Player expression, open world games,

37–38
Player identification, 114
Player identities, 120
Player knowledge-tracking, 84, 87
Player morality, 143
Player sprite physics, 21–22
Player stories, 91, 92, 151, 295, 298, 302
“Playful Text” (Elliot talk), 107–108
Playtesting

authoring tools, 365–366
Duskers, 99–100
early in game development, 152

every option, 11
Frostpunk, 247

Playthrough
experience uniqueness, 59–61
detail significance, 214
immersion, 304
plot, 298
post-play reflection, 253-254
subjective realities, 235
time to complete, 66–67, 166
variances, 227

Plot beat, 155, 240, 242
Plot generators, 295–302

character traits, 300
dialog snippets, 299
localization, 297
micro-stories, 300–302
narrative choice/player choice,

298–299
player connections, 302
player options, 298
player stories, 295–296, 298, 302
plot/story differences, 296–297
post-apocalyptic backstories, 300
repetitive plot generators, 297–298
resource-oriented actions, 300

Poetry walks see Computational Flâneur
Porting related work, 373
Possibility space, 4, 22, 37, 105
Post-traumatic stress disorder, 109
Procedural sandbox, 227, 228

dirty procedural narrative,
229–230, 238

Programming, non-linear progress, 46
Projects, end of, 24–25
Publishing platforms, tool

development, 370
Pulp-action genre (1930s), 67–68

Q

Qualitative procedural generation, 179
Quality Assurance, 238, 375
Quantum Circuit, The, 26, 27
Quest-givers, 32, 236–237

Index ■ 387

R

Radio plays, site-specific, 215–216
Railroading, 258
Randomness

adding interest, 137–138
aesthetics of, 37
authoring tools, 364
Dungeons & Dragons, 267
weighted, 6–7

Reality vs. perception, 19–20
Real-time animation, 40
Real-time games, 68
Redshirt, 281
Relationships, codifying into rules, 179
Religious metaphors, 142
Replacement grammar, 187,189,

191,193
Replayability, 37, 67, 163
Resources, 337
Restaurant Game, 367
Reward feedback, 118
Reynolds lecture (Game Developers

Conference), 18, 20
Rhetorical stance, expressing, 143
Rise of Nations, 18
Road Not Taken, 146
Rogue Dream, A, 54–57, 55
Role identity, 116–117
Roles

fantastical, 122
freely rewarding, 122–123

S

Sacrifice, The, 303
Scheherazade project, 367
Scraped information, ethical issues, 53–54
Secret endings, 313, 314
Sequences and loops, 81–82
Settings, realistic, 121
Sexism, game coding, 144
Sexual morality, 277
Sexuality, game coding, 50–52
Shortcuts, constraint solvers, 11

Shrouded Isle, The
generated personalities, 273–274, 276,

303–316; administrative monster
303, 316; advisors 307–308, 310,
313; aesthetic identity 316;
analysis and conclusions
314–316; Awoken trait 313, 314;
character arcs 311; character
generation 304–306; character
traits 304–305, 306, 308–309,
311–314; Chernobog 313–314,
315; cult values 304; family tree
305; gameplay system 306–307;
gameplay systems 316; Great
Houses 304, 305, 307; interaction
306–311; moral dilemmas 303,
315; overview 303–304; player
options 313; player self-reflection
315; player’s goal (survival) 307,
309; player’s knowledge 308–309;
playtesting 306, 314–315;
playthrough phases 307–308,
312–313, 314–315, 316;
Purification Tower 312–314, 312,
314; randomness 309; Sacrifice
phase 308, 309, 310–311, 310,
314–315, 316; secret ending 313,
314; Sunken Sins (expansion)
303, 306, 312, 313, 314; Town
phase 307, 312–313, 315; trait
modification 311–314; Work
phase 307–310, 307, 309, 312,
314, 316

Sims, The
dramatic gameplay, 115–124;

abstraction and humor 124;
acting 114; character failing 116;
character reactions 280;
characters and traits 119–121;
death 117; design patterns (other
games) 124–125; dramatic
currency 123; expansion packs
115–116; fail forward 116–117;
go broad 115–116; low challenge
122–123; NPC behavior 117, 119,

388 ■ Index

120; personal roles 121; pie menu
114, 120, 121; player
commitments 123; player
identification 114; reactions
118–119; realistic fantasies
121–122; role identity 116–117;
roles (rewarding) 122–123;
romance 117, 118; story surprises
117–118; things to watch 118;
traits 120, 121; transgressive play
122; Wishes and Promises 123

Simulations
and agents, 11–13
modern life, 122

“Skins”, 40
Skyrim, 31
Sleep No More, 210–211, 214
Smartphone technology, 215, 217–218,

220–221
Snooper Troops, 66
Social media platforms, automated

accounts, 351
Social psychology, 139
Society, definition (Oscar Wilde), 243
Software project management, 46
Sorcery!, 81–82
Southern Monsters

Cripplefoot, 104–105, 108
text generation, 103–105, 104, 107–108

Spatial linearity, 38
Spatial progress

emergent narrative, 156
and story progress, 41

Spelunky, 18–19
Giant Spider enemy, 19
level generator, 22, 52–53
new level generation, 61
tile-based methods, 18

Spirit, Character Engine, 362–363,
372–373

Spore, 5, 8
Stars without Number, 265
State of Decay (2)

procedural characters, 283–294;
believability standard 286,

287–288; blandness 284–285;
character trait rules 285;
conclusions 293–294;
contradiction winnowing
286–287, 293; contradictions
285–286; genuinely familiar
people 288; identity
contradictions 287–290; “Indian”
cultural background 288–289;
Mexican characters 289; movie
star characters 284; names
289–290; nicknames 285,
289–290; Old Testament name
list 290; order of operations
291–292; permadeath 283;
problems 292–293; restarting the
game 283; traits 285, 286–287,
291, 292–293; valid voice choices
292; voiceover actors 291–292

Static content, 46
Steering behaviors, 11–12
Steering forces, procedural dance,

5, 12
Stellaris, 57
Story daemon, 41–42
Story elements, order of, 239–240
Story fragments (combining)

The Curious Expedition, 127–134;
abstraction levels 128–131; diary
events 131–132; diary screen 128;
different interpretations (same
event) 131–133; event layer
129–131; gameplay 127–128;
night camp example 128,
129–130, 129, 133; sentence layer
131; story arcs 133–134;
transgressive play 132; world
layer 128–129

Story prisons, 29
Story progress, and spatial progress, 41
Story progression types, 41–42
Storylets

authoring tools, 363, 364
Fallen London, 45

StoryNexus, 362

Index ■ 389

Storytelling, machine coding, 63
Storytelling techniques

absences, 232–233
control of audience’s point of view,

47–48
emotional responses, 48
inconsistencies (truth), 234–236
mysteries, 233–234
players’ ability to make stories from

facts, 229–230, 238
pull vs. push, 231–238
robust characterization, 269
situated, 215
tangents, 236–238
translucent lies, 231

Subconscious introspection, 141
Subjective realities, 181, 221, 235, 315
Subversions, 25
Survival dilemma, 247
Symbolic meanings, 53

T

Tabletop role playing games (TTRPGs),
257–258; see also Dungeons &
Dragons

creation through discovery, 267
die rolls, 265, 268
game master, 258–259, 265
player agency, 258
railroading, 258

Taboos, transgressive play, 122, 132
Tags

character traits, 286–287, 291,
292–293

content selection, 43, 44
Tarot, 339–350

associational construction, 339,
346, 347

decks, 339; card numbers 347, 348;
Crowley’s Thoth 341; Four of
Wands 342; Major Arcana 339,
340, 347; Minor Arcana 341, 342,
347; overlapping taxonomies
340–341, 347; Rider-Waite-

Smith 340, 341; suites 341, 347;
Wheel of Fortune 348

divination, 339, 340
“hooks”, 345
interpretive quality, 349
narrative possibility space, 345, 348
possibilities (vast), 340, 343, 349
querent’s agency, 343, 348
querent’s self-conception, 347
querent’s situation, reader’s

understanding of, 346
reader and querent relationship, 340
reader’s interpretive agency, 343, 347
reader’s taxonomy, 341–343
reading, 339, 340; complexity 345, 348;

narratively satisfying 349;
situation-action-outcome 345

spreads, 343–345; card substitution
348–349; Celtic Cross 345;
linear-narrative progression 343;
one card 343; past-present-future
343–344, 344; “situation” card
343–344; ten card 343–345, 344;
three card 343, 345–349, 345;
upright or reversed cards 348

suites, ; Pentacles 341, 347; Swords 347
Tarot of the Parrigues (Short), 349
Tay (Twitterbot), 57–58
Technical ideas, creative goal, 37
Tetris, 297
Text adventures, parser-based, 318
Text generation, 103–111; see also

Descriptions (generated)
Animal Town, 109–110
The Annals of the Parrigues (Short),

193, 194
Battlecakes, 105–107, 106
convention attendee, 103, 105
curated grammar, 107
The Curious Expedition, 131
Domovoi, 108–109
Dwarf Fortress, 149–158
emotional storytelling, 109
grammar approaches, 193–194,

196–197, 201–202

390 ■ Index

letter generation, 109–110
Matul Remrit, 110–111
phrases, filtering, 204–205
“Playful Text” (Elliot talk), 107–108
Southern Monsters, 103–105, 104,

107–108
tables, 151
tools, 111

Text substitution system, 39; see also
Replacement grammar; Tracery

Text template, 42
Theater pieces, 211–212, 214–215
Themes

amplifying gameplay emotions,
140–142

dissonance, 138–139
identifying, 138–140

Then She Fell (Third Rail Productions),
211–212

This War of Mine, 242, 243, 253
Tile-based methods, 8–9, 18
Tools

authoring tools, 362–369
building new tools, 370–375
Character Engine (Spirit AI),

362–363
Choice of Games’ ChoiceScript

tool, 371
content analysis, 366
dialog, 368
expert users, 370
grammar based systems, 362, 363
in-house studio designed, 370
importing content, 367–368
Inform (7), 362
intended users, 369–370
Keyword-based tools, 368, 369
missing content, 44
overview, 361
planning new tools, 369–370
playtesting, 365–366
StoryNexus, 362, 363
text generation, 111

Totalitarian state, 251
Tracery, 10, 39, 193, 194, 196–197, 197

Traits
communicating, 121
dramatic gameplay, 120
NPCs (non-player characters), 120
player identity, 120
procedural characters, 285, 286–287,

291, 292–293
Transgressive play, 122, 132
Treasure

distribution in RPG, 7
distribution methods, 18–19

Trickster character, 277
Triple Town

colonialism, 135–147; audience
education 147; communication
failures 143–144; failure of taste
144–145; gameplay amplification
140–142; identifying theme
138–140; mechanics 138–139,
142; mental labels 141–142;
narrative failure 142–143; pacing
138; random moving element
137–138; subtle references 144;
versions of 147

Truman Show, The, 79
Truth, what is, 235–236
TTRPGs see Tabletop role playing games

(TTRPGs)
Twine, 108, 109
Twitch, 57–58
Twitter, automated accounts, 351
Twitterbots, 351-360

art form, 354, 355–356
breakdown, 360
creating and responsibility, 355, 360
embedded images and videos, 353–354
human authorship, 223
internal consistency, 352–353
jokes, 223, 357–359
Kazemi bots, 358–359
Markov chains, 221–222
metadata, 355
output, 14, 210
Pipkin bots, 353–354, 356–357
posting schedules, 359

Index ■ 391

responding to conditions of Twitter,
359–360

Tay, 57–58
Tracery, 10
“Two Headlines”, 19–20
worldbuilding, 351, 352

U

Ubisoft Montreal, InterProject, 24,
25, 29

Unity (component-driven engine), 322

V

Video games (earliest) ; see also Murder on
the Zinderneuf (1983)

cost to buy, 67
playthrough time, 66–67
re-playable adventure, 67
technical limitations, 72, 73

Virus Named TOM, A, 99
Vocalization Target component, 322
Voice-acted games, 111
Voyageur

description generation, 193–207;
example text 196; filter stack
200–201, 201, 204–205; filtering
200–201, 201, 204–205; grammar
201–202; Improv (system)
193–194, 196–199, 198, 203;
mechanics 195; one-way travel
194–195; phrases 204–205;
planet generation 202–205, 206;
procedural locales 194; setting
the stage 194–196

W

Walking Dead, The (adventure game), 165
We Happy Few

dirty procedural narrative, 227–240;
absence of children 232–233;
Arthur’s playthrough 227, 235;
dangers in using 238; definition
238; generated island 228; Holy
Grail 239–240; inconsistencies
(truth) 234–236; Joy (happy pills)
227, 237; mental work and
emotional engagement 230;
mysteries 233–234; NPCs
(non-player characters) 230, 236;
overview 227–229; quests
236–237; Sally’s story 235; story
element order 239–240; tangents
236–238

Weave structures, 79–81
Weighted randomness, 6–7
West Marches, 265
Whimsy, 124
Wikipedia article text, Improv (system),

197–199
Workflows, level art and gameplay

geometry, 47
World models

generation, 202–205
reincorporation, 202, 204

Y

You Don’t Know What You’re Missing,
25–26, 28

392 ■ Index

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Foreword
	About the Editors
	Contributors
	SECTION 1: Introduction

	CHAPTER 1: Getting Started with Generators

	Building Your Artist-in-a-Box
	From Rules to Generative Methods
	Ways that Generators Fail
	Notes

	CHAPTER 2: Keeping Procedural Generation Simple

	Two Examples from Spelunky
	Perception versus Reality
	Using Context to Take Your Work from Trivial to Impressive
	The Problem Might Not Be Your Procgen
	Conclusion

	CHAPTER 3:
Generated Right in the Feels
	Note

	CHAPTER 4: Adapting Content to Player Choices

	Choosing Which Parts to Adapt
	Combining Bits
	Creating the Right Bits
	Papering over the Seams
	Control over Specificity
	ACompletely New Way of Creating Content
	The Big Picture
	Notes

	CHAPTER 5: Ethical Procedural Generation

	Talking in Code
	The Big Wide World
	You Are What You Eat
	Talking the Talk
	The Future

	SECTION 2: Structure and Systems

	CHAPTER 6: Retrospective: Murder on the Zinderneuf (1983)

	CHAPTER 7: Designing for Narrative Momentum

	Only Forwards Design
	Opening the Flow
	The Design of Ink
	The Weave Structure
	Content as Conditionals
	Sequences and Loops
	Narrative Momentum in aGraphical Context
	Knowledge as an Acyclic Directed Graph
	Knowledge Webs
	Using the Knowledge Model
	Conclusion

	CHAPTER 8: Curated Narrative in Duskers

	Explore, Adapt, Survive
	When All You Have Is aHammer
	Order Matters
	Let the Player Drive
	Narrative as aLure
	Compiling It All Down

	CHAPTER 9: Uncanny Text: Blending Static and Procedural Fiction

	Southern Monsters
	Battlecakes
	Playful Text
	The Domovoi
	Memory Blocks
	Matul Remrit
	The Future

	CHAPTER 10: Dramatic Play in The Sims

	Design Examples in The Sims
	Dramatic Design Patterns in Other Games

	CHAPTER 11: Memorable Stories from Simple Rules in Curious Expedition

	Three Levels of Abstraction
	Same Event, Different Interpretations
	Story Arcs

	CHAPTER 12: Amplifying Themes and Emotions in Systems

	The Emotions of Colonialism in Triple Town
	Identifying aTheme
	Using Theme to Amplify Gameplay Emotions
	Triple Town as aNarrative Failure
	Failures of Communication
	Failures of Taste
	Closing Thoughts
	Notes

	CHAPTER 13: Emergent Narrative in Dwarf Fortress

	Designing for Emergent Narrative
	The Player’s Perspective and Exposition

	CHAPTER 14: Heavily Authored Dynamic Storytelling in Church in the Darkness

	Motivations
	Inspirations
	Core Systems
	Player Choices
	Conclusion: Why Build It?

	SECTION 3: Worlds and Context

	CHAPTER 15: Generating Histories

	Entities and Events
	Subjectivity in History
	History Generation in Practice: Caves of Qud
	Conclusion
	Notes

	CHAPTER 16: Procedural Descriptions in Voyageur

	Setting the Stage
	Improv: The Tool
	Filtering, Reincorporation, and Sources of Truth
	Where World Models Come From
	Conclusions

	CHAPTER 17: Generating in the Real World

	How Do Analog Works Use Procedurality?
	Why Bother to Bring the Digital into the Physical?
	An Attempt
	Case Study: Computational Flâneur
	But IJust Want to Keep Making Digital Things!

	CHAPTER 18: Dirty Procedural Narrative in We Happy Few

	You Have aSuperpower
	Mental Work Makes Emotional Engagement
	Pull vs. Push
	Dirty Narrative Is Dangerous
	The Holy Grail

	CHAPTER 19: Beyond Fun in Frostpunk

	Making Sense of the World
	Developing Frostpunk
	Prototype 1: Society
	Prototype 2: Prophet
	Prototype 3: Player Agency
	Final Stretch
	Notes

	CHAPTER 20: Procedural Storytelling in Dungeons & Dragons

	Moves
	Dangers
	Failing Forward

	SECTION 4: Characters

	CHAPTER 21: Maximizing the Impact of Generated Personalities

	Tip 1: Define the Player’s Interpretation Process
	Tip 2: Personalities Are Already Subtle
	Tip 3: Comedy Is Close at Hand
	Tip 4: Allow after-the-Fact Investigation
	Tip 5: Reactions ≥ Actions
	Tip 6: Change Is Powerful
	Summary
	Notes

	CHAPTER 22: Procedural Characters in State of Decay 2

	Blandness
	Contradictions
	Contradiction Winnowing
	Identity Contradictions
	Order of Operations
	ORDER OF OPERATIONS, REDESIGNED
	Summary

	CHAPTER 23: Plot Generators

	CHAPTER 24: Generating Personalities in The Shrouded Isle

	Character Generation
	Interaction
	Trait Modification
	Analysis and Conclusion

	CHAPTER 25: Dialog

	Use Cases
	Context-Sensitive Vocalization
	Automatic Triggers
	Memory
	Repartee
	Complex Responses
	Data-Driven Context
	Usability
	Data Structures and Their Implementation
	Authoring Tools
	Conclusion
	Note

	SECTION 5: Resources

	CHAPTER 26: Tarot as Procedural Storytelling

	Notes

	CHAPTER 27: Things You Can Do with Twitterbots

	CHAPTER 28: Creating Tools for Procedural Storytelling

	What Can Authoring Tools for Procedural Storytelling Do?
	Things to Think about while Planning aNew Tool
	As You’re Building
	Notes

	Index

